首页> 外文OA文献 >How to Avoid the Curse of Dimensionality: Scalability of Particle Filters with and without Importance Weights
【2h】

How to Avoid the Curse of Dimensionality: Scalability of Particle Filters with and without Importance Weights

机译:如何避免维度诅咒:粒子过滤器的可扩展性,具有和无重量

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Particle filters are a popular and flexible class of numerical algorithms tosolve a large class of nonlinear filtering problems. However, standard particlefilters with importance weights have been shown to require a sample size thatincreases exponentially with the dimension D of the state space in order toachieve a certain performance, which precludes their use in veryhigh-dimensional filtering problems. Here, we focus on the dynamic aspect ofthis curse of dimensionality (COD) in continuous time filtering, which iscaused by the degeneracy of importance weights over time. We show that thedegeneracy occurs on a time-scale that decreases with increasing D. In order tosoften the effects of weight degeneracy, most particle filters use particleresampling and improved proposal functions for the particle motion. We explainwhy neither of the two can prevent the COD in general. In order to address thisfundamental problem, we investigate an existing filtering algorithm based onoptimal feedback control that sidesteps the use of importance weights. We usenumerical experiments to show that this Feedback Particle Filter (FPF) by Yanget al. (2013) does not exhibit a COD.
机译:粒子过滤器是一种流行且灵活的数值算法,大类的大类非线性滤波问题。然而,已经证明了具有重要重量的标准颗粒滤光器需要用状态空间的尺寸D指数逐渐增加的样本尺寸,以便进行一定的性能,这排除了它们在非常高滤波问题中的使用。在这里,我们专注于连续时间过滤中的维数(COD)的动态方面,这使得重要性重量随时间的退化性。我们表明,在逐渐减少的时间尺度上发生时间尺度的时间尺度发生。为了使重量退化的效果,大多数粒子过滤器使用分子采样和改进的颗粒运动来函数。我们既说两者都没有防止鳕鱼一般。为了解决这一特殊问题,我们调查了基于现有的基于Optimal反馈控制的过滤算法,该校验算法尽管使用重要性权重。我们Usenmerical实验表明杨树Al的该反馈粒子过滤器(FPF)。 (2013)没有展示鳕鱼。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号