首页> 外文OA文献 >Log-Linear Model Based Behavior Selection Method for Artificial Fish Swarm Algorithm
【2h】

Log-Linear Model Based Behavior Selection Method for Artificial Fish Swarm Algorithm

机译:基于日志线性模型的人工鱼类群算法的行为选择方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Artificial fish swarm algorithm (AFSA) is a population based optimization technique inspired by social behavior of fishes. In past several years, AFSA has been successfully applied in many research and application areas. The behavior of fishes has a crucial impact on the performance of AFSA, such as global exploration ability and convergence speed. How to construct and select behaviors of fishes are an important task. To solve these problems, an improved artificial fish swarm algorithm based on log-linear model is proposed and implemented in this paper. There are three main works. Firstly, we proposed a new behavior selection algorithm based on log-linear model which can enhance decision making ability of behavior selection. Secondly, adaptive movement behavior based on adaptive weight is presented, which can dynamically adjust according to the diversity of fishes. Finally, some new behaviors are defined and introduced into artificial fish swarm algorithm at the first time to improve global optimization capability. The experiments on high dimensional function optimization showed that the improved algorithm has more powerful global exploration ability and reasonable convergence speed compared with the standard artificial fish swarm algorithm.
机译:人工鱼类群算法(AFSA)是一种基于人口的优化技术,受到鱼类的社会行为的启发。在过去几年中,AFSA已成功应用于许多研究和应用领域。鱼类的行为对AFSA的表现产生了至关重要的影响,例如全球勘探能力和收敛速度。如何构建和选择鱼类的行为是一项重要任务。为了解决这些问题,在本文中提出并实施了一种改进的基于对数线性模型的人工鱼类群算法。有三个主要作品。首先,我们提出了一种基于对数线性模型的新行为选择算法,可以增强行为选择的决策能力。其次,提出了基于自适应重量的自适应运动行为,其可以根据鱼类的分集动态调整。最后,首次定义了一些新行为并将人工鱼类群算法引入,以提高全局优化能力。高尺寸函数优化的实验表明,与标准人工鱼类群算法相比,改进的算法具有更强大的全球勘探能力和合理的会聚速度。

著录项

  • 作者

    Zhehuang Huang; Yidong Chen;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号