首页> 外文OA文献 >Fault Diagnosis of a Reciprocating Compressor Air Valve Based on Deep Learning
【2h】

Fault Diagnosis of a Reciprocating Compressor Air Valve Based on Deep Learning

机译:基于深度学习的往复式压缩机空气阀的故障诊断

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

With the development of machine learning in recent years, the application of machine learning to machine fault diagnosis has become increasingly popular. Applying traditional feature extraction methods for complex systems will weaken the characterization capacity of features, which are not conducive to subsequent classification work. A reciprocating compressor is a complex system. In order to improve the fault diagnosis accuracy of complex systems, this paper does not use traditional fault diagnosis methods and applies deep convolutional neural networks (CNNs) to process this nonlinear and non-stationary fault signal. The valve fault data is obtained from the reciprocating compressor test bench of the Daqing Natural Gas Company. Firstly, the single-channel vibration signal is collected on the reciprocating compressor and the one-dimensional CNN (1-D CNN) is used for fault diagnosis and compared with the traditional model to verify the effectiveness of the 1-D CNN. Next, the collected eight channels signals (three channels of vibration signals, four channels of pressure signals, one channel key phase signal) are applied by 1-D CNN and 2-D CNN for fault diagnosis to verify the CNN that it is still suitable for multi-channel signal processing. Finally, further study on the influence of the input of different channel signal combinations on the model diagnosis accuracy is carried out. Experiments show that the seven-channel signal (three-channel vibration signal, four-channel pressure signal) with the key phase signal removed has the highest diagnostic accuracy in the 2-D CNN. Therefore, proper deletion of useless channels can not only speed up network operations but also improve diagnosis accuracy.
机译:随着近年来机器学习的发展,机器学习的应用到机器故障诊断已经变得越来越受欢迎。应用传统的特征提取方法对于复杂系统将削弱特征的特征能力,这不利于随后的分类工作。往复式压缩机是复杂的系统。为了提高复杂系统的故障诊断精度,本文不使用传统的故障诊断方法,并应用深卷积神经网络(CNNS)来处理该非线性和非静止故障信号。阀门故障数据是从大庆天然气公司的往复式压缩机测试台获得的。首先,在往复式压缩机上收集单通道振动信号,并且一维CNN(1-D CNN)用于故障诊断并与传统模型相比,以验证1-D CNN的有效性。接下来,通过1-D CNN和2-D CNN施加收集的八个通道信号(三个振动信号,四个压力信号通道,一个通道键相位信号)进行故障诊断,以验证其仍然合适的CNN用于多通道信号处理。最后,执行进一步研究不同信道信号组合对模型诊断精度的影响。实验表明,七通道信号(三通道振动信号,四通道压力信号)具有键相位信号的键相位信号在2-D CNN中具有最高的诊断精度。因此,正确删除无用频道不仅可以加速网络运营,还可以提高诊断精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号