首页> 外文OA文献 >On Consistency of Graph-based Semi-supervised Learning
【2h】

On Consistency of Graph-based Semi-supervised Learning

机译:论基于图的半监督学习的一致性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Graph-based semi-supervised learning is one of the most popular methods inmachine learning. Some of its theoretical properties such as bounds for thegeneralization error and the convergence of the graph Laplacian regularizerhave been studied in computer science and statistics literatures. However, afundamental statistical property, the consistency of the estimator from thismethod has not been proved. In this article, we study the consistency problemunder a non-parametric framework. We prove the consistency of graph-basedlearning in the case that the estimated scores are enforced to be equal to theobserved responses for the labeled data. The sample sizes of both labeled andunlabeled data are allowed to grow in this result. When the estimated scoresare not required to be equal to the observed responses, a tuning parameter isused to balance the loss function and the graph Laplacian regularizer. We givea counterexample demonstrating that the estimator for this case can beinconsistent. The theoretical findings are supported by numerical studies.
机译:基于图的半监督学习是最常用的方法inmachine学习的一个。它的一些理论性的如thegeneralization错误和图形拉普拉斯regularizerhave的收敛界了研究,在计算机科学和统计学文献。然而,afundamental统计特性,估计从thismethod一致性尚未得到证实。在这篇文章中,我们研究problemunder一种非参数框架的一致性。我们证明图的basedlearning的一致性,所述估计的分数被强制为等于用于数据标记的响应theobserved的情况。双方打成andunlabeled数据的样本量被允许在这个结果成长。当为等于所观察到的响应不是必需的所估计的scoresare,调谐参数isused平衡损失函数和图形拉普拉斯正则。我们givea反例,证明了这种情况下,估计可以beinconsistent。该理论成果进行了数值研究的支持。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号