首页> 外文OA文献 >Conjugate Heat Transfer and Fluid Flow Modeling for Liquid Microjet Impingement Cooling with Alternating Feeding and Draining Channels
【2h】

Conjugate Heat Transfer and Fluid Flow Modeling for Liquid Microjet Impingement Cooling with Alternating Feeding and Draining Channels

机译:液体微射精冲击冷却与交替馈送和排水通道的共轭传热和流体流动模拟

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Liquid microjet impingement cooling has shown the potential to be the solution for heat removal from electronic devices such as very-large-scale integration (VLSI) chips. The post-impingement dynamics of the jet, specifically the interaction between the liquid fronts on the surface engendered by the jets is a critical criterion improving the heat transfer characteristics. While some seminally important experimental studies have investigated this attribute, the amount of accurate data and analysis is limited by the shortcomings of real-life experiments. In this article, numerical investigations into the fluid dynamics and heat transfer in microjet cooling systems are carried out. Specifically, this paper addresses the question regarding the necessary fidelity of the simulations. Different Reynolds-averaged Navier−Stokes (RANS) models are compared to the Large Eddy Simulations (LES) simulation and the potential fidelity of different eddy-viscosity-based closures is clearly shown. Recommendations are made regarding the RANS closures that should give the best performance. It is demonstrated that the transition Shear Stress Transport (SST) model and k - ω SST model both show excellent ability to predict the local or average Nu, and also local level pressure coefficient f with less than 5% difference in the range of 30 < Red < 4000, compared with the reference LES model. For the experimental measurements in the range of 130 < Red < 1400, the LES model, transition SST model and k - ω SST model all show less than 25% prediction error. Moreover, it is shown that the validity of the unit cell assumption for the temperature and flow distribution depends on the flow rate.
机译:液体微射流冲击冷却已经显示出潜力是从诸如非常大的集成(VLSI)芯片的电子设备中的热除去的溶液。喷射后冲击动力学,特别是由喷射器接收的表面上的液体前沿之间的相互作用是提高传热特性的关键标准。虽然一些最重要的实验研究已经调查了这一属性,但准确的数据和分析的量受到现实实验的缺点的限制。在本文中,进行了数值调查,进入流体动力学和微射精冷却系统中的传热。具体而言,本文解决了关于模拟必要保真度的问题。将不同的Reynolds平均水平(RANS)模型与大型涡流模拟(LES)仿真进行比较,并且清楚地示出了不同涡流粘合闭合的潜在保真度。建议是关于rans关闭应该提供最佳表现的建议。结果表明,过渡剪切应力传输(SST)模型和K - ωSST模型均显示出良好的预测局部或平均NU的能力,以及局部水平压力系数F,局部水平压力系数F具有小于5%的差异为30 <红色<4000,与参考LES模型相比。对于130 <红色<1400,LES模型,转换SST模型和K - ωSST模型的实验测量,所有的预测误差都显示出小于25%的预测误差。此外,示出了对温度和流量分布的单位细胞假设的有效性取决于流速。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号