首页> 外文OA文献 >Deep Learning-Based Efficient Model Development for Phishing Detection Using Random Forest and BLSTM Classifiers
【2h】

Deep Learning-Based Efficient Model Development for Phishing Detection Using Random Forest and BLSTM Classifiers

机译:基于深度学习的高效模型开发,用于使用随机林和BLSTM分类器的网络钓鱼检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

With the increase in the number of electronic devices and developments in the communication system, security becomes one of the challenging issues. Users are interacting with each other through different heterogeneous devices such as smart sensors, actuators, and many other devices to process, monitor, and communicate different scenarios of real life. Such communication needs a secure medium through which users can communicate in a secure and reliable way so that their information may not be lost. The proposed study is an endeavor toward the detection of phishing by using random forest and BLSTM classifiers. The experimental results of the proposed study are promising in phishing detection, and the study reflects the applicability of the proposed algorithms in the information security. The experimental results show that the BLSTM-based phishing detection model is prominent in ensuring the network security by generating a recognition rate of 95.47% compared to the conventional RF-based model that generates a recognition rate of 87.53%. This high recognition rate for the BLSTM-based model reflects the applicability of the proposed model for phishing detection.
机译:随着电子设备数量的增加和通信系统中的开发,安全性成为一个具有挑战性的问题之一。用户通过不同的异构设备彼此交互,例如智能传感器,执行器和许多其他设备来处理,监控和传达不同的现实生活场景。这种通信需要一个安全介质,用户可以通过该安全介质以安全可靠的方式进行通信,以便它们的信息可能不会丢失。拟议的研究是通过使用随机森林和BLSTM分类器检测网络钓鱼的努力。所提出的研究的实验结果在网络钓鱼检测中具有很有希望,研究反映了所提出的算法在信息安全中的适用性。实验结果表明,与传统的基于射频模型相比,基于BLSTM的网络钓鱼检测模型在确保网络安全性95.47%的识别率时,产生了87.53%的识别率。基于BLSTM的模型的这种高识别率反映了所提出的模型对网络钓鱼检测的适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号