首页> 外文OA文献 >Named Entity Recognition with Bidirectional LSTM-CNNs
【2h】

Named Entity Recognition with Bidirectional LSTM-CNNs

机译:命名与双向LSTM-CNNS的实体识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Named entity recognition is a challenging task that has traditionallyrequired large amounts of knowledge in the form of feature engineering andlexicons to achieve high performance. In this paper, we present a novel neuralnetwork architecture that automatically detects word- and character-levelfeatures using a hybrid bidirectional LSTM and CNN architecture, eliminatingthe need for most feature engineering. We also propose a novel method ofencoding partial lexicon matches in neural networks and compare it to existingapproaches. Extensive evaluation shows that, given only tokenized text andpublicly available word embeddings, our system is competitive on the CoNLL-2003dataset and surpasses the previously reported state of the art performance onthe OntoNotes 5.0 dataset by 2.13 F1 points. By using two lexicons constructedfrom publicly-available sources, we establish new state of the art performancewith an F1 score of 91.62 on CoNLL-2003 and 86.28 on OntoNotes, surpassingsystems that employ heavy feature engineering, proprietary lexicons, and richentity linking information.
机译:命名实体识别是一个具有挑战性的任务,具有传统的重新获得了特征工程和lexicons形式的大量知识,以实现高性能。在本文中,我们介绍了一种新的NeuralNetwork架构,它使用混合式双向LSTM和CNN架构自动检测字符和字符征区,消除了对大多数特征工程的需求。我们还提出了一种新的偏离神经网络匹配的新方法,并将其与现有的应用程序进行比较。广泛的评估表明,只有销售文本和公共销售单词嵌入式,我们的系统在Conll-2003Dataset上具有竞争力,并超过了先前报告的ontonotes 5.0数据集的最先进的现有性能状态2.13 F1点。通过使用两个公开的来源构建的词典,我们在onll-2003和86.28上建立了新的艺术表现的新状态,在Onototes上,使用繁重的特征工程,专有词汇和Richentity联系信息的超越系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号