首页> 外文OA文献 >A DDoS Attack Mitigation Scheme in ISP Networks Using Machine Learning Based on SDN
【2h】

A DDoS Attack Mitigation Scheme in ISP Networks Using Machine Learning Based on SDN

机译:基于SDN的机器学习的ISP网络中的DDOS攻击缓解方案

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Keeping Internet users protected from cyberattacks and other threats is one of the most prominent security challenges for network operators nowadays. Among other critical threats, distributed denial-of-service (DDoS) becomes one of the most widespread attacks in the Internet, which is very challenging to mitigate appropriately as DDoS attacks cause the system to stop working by resource exhaustion. Software-defined networking (SDN) has recently emerged as a new networking technology offering unprecedented programmability that allows network operators to configure and manage their infrastructures dynamically. The flexible processing and centralized management of the SDN controller allow flexibly deploying complex security algorithms and mitigation methods. In this paper, we propose a novel DDoS attack mitigation in SDN-based Internet Service Provider (ISP) networks for TCP-SYN and ICMP flood attacks utilizing machine learning approach, i.e., K-Nearest-Neighbor (KNN) and XGBoost. By deploying a testbed, we implement the proposed algorithms, evaluate their accuracy, and address the trade-off between the accuracy and mitigation efficiency. Through extensive experiments, the results show that the algorithms can efficiently mitigate the attack by over 98.0% while benign traffic is not affected.
机译:让互联网用户免受网络攻击和其他威胁的保护,现在是网络运营商最突出的安全挑战之一。在其他关键威胁中,分布式拒绝服务(DDOS)成为互联网上最广泛的攻击之一,这对于适当的攻击性是非常具有挑战性的,因为DDOS攻击导致系统停止通过资源疲惫工作。最近,软件定义的网络(SDN)最近被出现为新的网络技术,提供前所未有的可编程性,允许网络运营商动态地配置和管理其基础架构。 SDN控制器的灵活处理和集中管理允许灵活地部署复杂的安全算法和缓解方法。在本文中,我们在基于SDN的互联网服务提供商(ISP)网络中提出了一种用于TCP-SYN和ICMP洪水攻击的新型DDOS攻击缓解,利用机器学习方法,即K-Collectib-邻(KNN)和XGBoost。通过部署测试平台,我们实施了所提出的算法,评估其准确性,并在准确性和缓解效率之间解决权衡。通过广泛的实验,结果表明,该算法可以有效地减轻攻击超过98.0%,而良性流量不受影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号