首页> 外文OA文献 >Self-Adaptive and Relaxed Self-Adaptive Projection Methods for Solving the Multiple-Set Split Feasibility Problem
【2h】

Self-Adaptive and Relaxed Self-Adaptive Projection Methods for Solving the Multiple-Set Split Feasibility Problem

机译:用于解决多集分割可行性问题的自适应和轻松的自适应投影方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Given nonempty closed convex subsets , and nonempty closed convex subsets , , in the - and -dimensional Euclidean spaces, respectively. The multiple-set split feasibility problem (MSSFP) proposed by Censor is to find a vector such that , where is a given real matrix. It serves as a model for many inverse problems where constraints are imposed on the solutions in the domain of a linear operator as well as in the operator’s range. MSSFP has a variety of specific applications in real world, such as medical care, image reconstruction, and signal processing. In this paper, for the MSSFP, we first propose a new self-adaptive projection method by adopting Armijo-like searches, which dose not require estimating the Lipschitz constant and calculating the largest eigenvalue of the matrix ; besides, it makes a sufficient decrease of the objective function at each iteration. Then we introduce a relaxed self-adaptive projection method by using projections onto half-spaces instead of those onto convex sets. Obviously, the latter are easy to implement. Global convergence for both methods is proved under a suitable condition.
机译:鉴于非空闭凸子集,以及非空,在封闭的凸子集 - 和维欧氏空间,分别。由检查员提出的多组分割可行性问题(MSSFP)是要找到一个载体中,使得,其中一个是给定的实矩阵。它作为其中约束在一个线性算子域的解决方案,以及在运营商的范围强加许多反问题的典范。 MSSFP有多种在现实世界中的特定应用,如医疗,图像重构,和信号处理。在本文中,对于MSSFP,我们首先提出通过采用一种新的自适应投影方法的Armijo状搜索,这剂量不需要估计Lipschitz常数,并计算矩阵的最大特征值;此外,它使目标函数在每次迭代充分降低。然后,我们通过使用突起到半空间,而不是那些在凸集引入松弛自适应投影方法。显然,后者很容易实现。对于这两种方法全局收敛在适当条件下证明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号