首页> 外文OA文献 >An automatic robust Bayesian approach to principal component regression
【2h】

An automatic robust Bayesian approach to principal component regression

机译:一种自动强大的贝叶斯方法对主成分回归

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Principal component regression is a linear regression model with principalcomponents as regressors. This type of modelling is particularly useful forprediction in settings with high-dimensional covariates. Surprisingly, theexisting literature treating of Bayesian approaches is relatively sparse. Inthis paper, we aim at filling some gaps through the following practicalcontribution: we introduce a Bayesian approach with detailed guidelines for astraightforward implementation. The approach features two characteristics thatwe believe are important. First, it effectively involves the relevant principalcomponents in the prediction process. This is achieved in two steps. The firstone is model selection; the second one is to average out the predictionsobtained from the selected models according to model averaging mechanisms,allowing to account for model uncertainty. The model posterior probabilitiesare required for model selection and model averaging. For this purpose, weinclude a procedure leading to an efficient reversible jump algorithm. Thesecond characteristic of our approach is whole robustness, meaning that theimpact of outliers on inference gradually vanishes as they approach plus orminus infinity. The conclusions obtained are consequently consistent with themajority of observations (the bulk of the data).
机译:主成分回归是一个线性回归模型,主要是校长作为回归流器。这种类型的建模在具有高维协调因子的环境中特别有用。令人惊讶的是,贝叶斯方法的重要文献治疗是相对稀疏的。 Inthis纸张,我们的目的是通过以下实际协调填补一些差距:我们介绍了一种贝叶斯方法,并提供了astraightforward实施的详细指导。该方法具有两个特征,即我们认为很重要。首先,它有效地涉及预测过程中的相关校长组分。这是两步实现的。第一台是模型选择;第二个是根据型号平均机制平均从所选模型中的预测,允许考虑模型不确定性。模型选择和型号平均所需的模型后概率。为此目的,Weinclude一个导致有效可逆跳转算法的过程。我们方法的权力是全部稳健性,这意味着在接近的orminus无限的过程中推断的异常值逐渐消失。因此,所获得的结论与观察结果(数据大部分)一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号