首页> 外文OA文献 >Detecting vehicle traffic patterns in urban environments using taxi trajectory intersection points
【2h】

Detecting vehicle traffic patterns in urban environments using taxi trajectory intersection points

机译:使用出租车轨迹交叉点检测城市环境中的车辆交通模式

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Detecting and describing movement of vehicles in established transportation infrastructures is an important task. It helps to predict periodical traffic patterns for optimizing traffic regulations and extending the functions of established transportation infrastructures. The detection of traffic patterns consists not only of analyses of arrangement patterns of multiple vehicle trajectories, but also of the inspection of the embedded geographical context. In this paper, we introduce a method for intersecting vehicle trajectories and extracting their intersection points for selected rush hours in urban environments. Those vehicle trajectory intersection points (TIP) are frequently visited locations within urban road networks and are subsequently formed into density-connected clusters, which are then represented as polygons. For representing temporal variations of the created polygons, we enrich these with vehicle trajectories of other times of the day and additional road network information. In a case study, we test our approach on massive taxi Floating Car Data (FCD) from Shanghai and road network data from the OpenStreetMap (OSM) project. The first test results show strong correlations with periodical traffic events in Shanghai. Based on these results, we reason out the usefulness of polygons representing frequently visited locations for analyses in urban planning and traffic engineering.
机译:在既定的运输基础设施中检测和描述车辆的运动是一项重要任务。它有助于预测用于优化交通规则并扩展既定运输基础架构的功能的期刊流量模式。交通模式的检测不仅包括分析多车辆轨迹的布置模式,还包括对嵌入地理背景的检查。在本文中,我们介绍了一种与城市环境中选择的高峰时段的交叉线路轨迹的方法。这些车辆轨迹交叉点(尖端)经常访问城市道路网络中的位置,随后形成密度连接的簇,然后将其表示为多边形。为了代表所产生的多边形的时间变化,我们通过当天的其他时间和额外的道路网络信息来丰富这些与车辆轨迹。在一个案例研究中,我们在来自OpenStreetMap(OSM)项目的来自上海和道路网络数据的大规模出租车浮动汽车数据(FCD)上测试了我们的方法。第一个测试结果表现出与上海的周期交通活动有关的强烈相关性。根据这些结果,我们推出代表城市规划和交通工程分析的经常访问位置的多边形的有用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号