首页> 外文OA文献 >Fuzzy Heuristics and Decision Tree for Classification of Statistical Feature-Based Control Chart Patterns
【2h】

Fuzzy Heuristics and Decision Tree for Classification of Statistical Feature-Based Control Chart Patterns

机译:基于统计特征的控制图模式分类的模糊启发式和决策树

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Monitoring manufacturing process variation remains challenging, especially within a rapid and automated manufacturing environment. Problematic and unstable processes may produce distinct time series patterns that could be associated with assignable causes for diagnosis purpose. Various machine learning classification techniques such as artificial neural network (ANN), classification and regression tree (CART), and fuzzy inference system have been proposed to enhance the capability of traditional Shewhart control chart for process monitoring and diagnosis. ANN classifiers are often opaque to the user with limited interpretability on the classification procedures. However, fuzzy inference system and CART are more transparent, and the internal steps are more comprehensible to users. There have been limited works comparing these two techniques in the control chart pattern recognition (CCPR) domain. As such, the aim of this paper is to demonstrate the development of fuzzy heuristics and CART technique for CCPR and compare their classification performance. The results show the heuristics Mamdani fuzzy classifier performed well in classification accuracy (95.76%) but slightly lower compared to CART classifier (98.58%). This study opens opportunities for deeper investigation and provides a useful revisit to promote more studies into explainable artificial intelligence (XAI).
机译:监测制造过程变异仍然具有挑战性,特别是在快速和自动化的制造环境中。有问题和不稳定的过程可以产生可以与可分配原因相关联的不同时间序列模式,以便诊断目的。已经提出了各种机器学习分类技术,如人工神经网络(ANN),分类和回归树(推车)和模糊推理系统,以增强传统的削波控制图表的过程监测和诊断。 ANN分类器通常对用户不透明,对分类程序的可解释性有限。然而,模糊推理系统和购物车更透明,内部步骤对用户更加可理解。有限的作品比较控制图表模式识别(CCPR)域中的这两种技术。因此,本文的目的是展示CCPR的模糊启发式和推车技术的开发,并比较他们的分类性能。结果表明,与购物车分类器相比,启发式Mamdani模糊分类器在分类精度(95.76%)中略微略低(98.58%)。本研究开设了更深入的调查机会,并提供了一个有用的重新审视,以促进更多的研究,以解释可解释的人工智能(XAI)。

著录项

  • 作者

    Munawar Zaman; Adnan Hassan;

  • 作者单位
  • 年度 2021
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号