首页> 外文OA文献 >Evaluation of Key Parameters Using Deep Convolutional Neural Networks for Airborne Pollution (PM10) Prediction
【2h】

Evaluation of Key Parameters Using Deep Convolutional Neural Networks for Airborne Pollution (PM10) Prediction

机译:利用深卷积神经网络对空机污染(PM10)预测评估关键参数

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Particulate matter with a diameter less than 10 micrometers (PM10) is today an important subject of study, mainly because of its increasing concentration and its impact on environment and public health. This article summarizes the usage of convolutional neural networks (CNNs) to forecast PM10 concentrations based on atmospheric variables. In this particular case-study, the use of deep convolutional neural networks (both 1D and 2D) was explored to probe the feasibility of these techniques in prediction tasks. Furthermore, in this contribution, an ensemble method called Bagging (BEM) is used to improve the accuracy of the prediction model. Lastly, a well-known technique for PM10 forecasting, called multilayer perceptron (MLP) is used as a comparison to show the feasibility, accuracy, and robustness of the proposed model. In this contribution, it was found that the CNNs outperforms MLP, especially when they are executed using ensemble models.
机译:直径小于10微米(PM10)的颗粒物质是今天的重要主题,主要是因为其浓度的增加及其对环境和公共卫生的影响。本文总结了卷积神经网络(CNNS)的使用来预测基于大气变量的PM10浓度。在这个特殊情况下,探索了使用深卷积神经网络(1D和2D)以探测这些技术在预测任务中的可行性。此外,在该贡献中,使用称为BAGGANG(BEM)的集合方法来提高预测模型的准确性。最后,使用众所周知的PM10预测技术,称为Multidayer Perceptron(MLP)作为比较,以显示所提出的模型的可行性,准确性和鲁棒性。在这一贡献中,发现CNNS优于MLP,特别是当使用集合模型执行时。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号