We consider a continuous population whose dynamics is described by thestandard stationary Fleming-Viot process, so that the genealogy of $n$uniformly sampled individuals is distributed as the Kingman $n$-coalescent. Inthis note, we study some genealogical properties of this population when thesample is conditioned to fall entirely into a subpopulation with most recentcommon ancestor (MRCA) shorter than $arepsilon$. First, using the combrepresentation of the total genealogy (Lambert & Uribe Bravo 2016), we showthat the genealogy of the descendance of the MRCA of the sample on thetimescale $arepsilon$ converges as $arepsilono 0$. The limit is theso-called Brownian coalescent point process (CPP) stopped at an independentGamma random variable with parameter $n$, which can be seen as the genealogy ata large time of the total population of a rescaled critical birth-deathprocess, biased by the $n$-th power of its size. Secondly, we show that in thislimit the coalescence times of the $n$ sampled individuals are i.i.d. uniformrandom variables in $(0,1)$. These results provide a coupling between twostandard models for the genealogy of a random exchangeable population: theKingman coalescent and the Brownian CPP.
展开▼
机译:我们考虑一个持续的人群,其动态由普通峰会 - 冒险过程中描述,因此$ N $统一采样的个人的家谱分配为Kingman $ N $ -Coalescent。注意事项,我们研究这种群体的一些族记性质,当这种种群被调节到与大多数左右祖先(MRCA)短于$ varepsilon $。首先,利用总谱系的CombreSentation(Lambert&Uribe Bravo 2016),我们将样本MRCA的后期的族谱展示在ThetImescale $ varepsilon $孵化为$ varepsilon to 0 $。该限制是Cheso叫做Browncian Consference Point过程(CPP)在独立的伽玛随机变量停止,参数$ N $,可以被视为族裔ata的大型时间,这是重新划分的临时生死亡进程的总人口,由此偏见$ n大小的最高功率。其次,我们展示在其中,$ N $采样个人的聚结时间是i.i.d. Uniformrandom变量以$(0,1)$。这些结果提供了随机可交换群体的术语学型号之间的耦合:Thekingman聚会和布朗CPP。
展开▼