首页> 外文OA文献 >Contamination Event Detection Method Using Multi-Stations Temporal-Spatial Information Based on Bayesian Network in Water Distribution Systems
【2h】

Contamination Event Detection Method Using Multi-Stations Temporal-Spatial Information Based on Bayesian Network in Water Distribution Systems

机译:基于水分配系统贝叶斯网络的多站时间空间信息的污染事件检测方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

As a core part of protecting water quality safety in water distribution systems, contamination event detection requires high accuracy. Previously, temporal analysis-based methods for single sensor stations have shown limited performance as they fail to consider spatial information. Besides, abundant historical data from multiple stations are still underexploited in causal relationship modelling. In this paper, a contamination event detection method is proposed, in which both temporal and spatial information from multi-stations in water distribution systems are used. The causal relationship between upstream and downstream stations is modelled by Bayesian Network, using the historical water quality data and hydraulic data. Then, the spatial abnormal probability for one station is obtained by comparing its current causal relationship with the established model. Meanwhile, temporal abnormal probability is obtained by conventional methods, such as an Autoregressive (AR) or threshold model for the same station. The integrated probability that is calculated employed temporal and spatial probabilities using Logistic Regression to determine the final detection result. The proposed method is tested over two networks and its detection performance is evaluated against results obtained from traditional methods using only temporal analysis. Results indicate that the proposed method shows higher accuracy due to its increased information from both temporal and spatial dimensions.
机译:作为保护水质安全在水分配系统中的核心部分,污染事件检测需要高精度。以前,单个传感器站的基于时间分析的方法显示出有限的性能,因为它们无法考虑空间信息。此外,来自多个站的丰富历史数据仍然在因果关系建模中仍然过分了起见。本文提出了一种污染事件检测方法,其中使用来自分配系统中的多站的时间和空间信息。上游和下游站之间的因果关系由贝叶斯网络建模,使用历史水质数据和液压数据。然后,通过将其当前因果关系与已建立的模型进行比较来获得一个站的空间异常概率。同时,通过常规方法获得时间异常概率,例如同一站的自回归(AR)或阈值模型。计算使用逻辑回归使用的时间和空间概率来确定最终检测结果。在两个网络上测试了所提出的方法,并且通过仅使用时间分析评估从传统方法获得的结果评估其检测性能。结果表明,所提出的方法显示出由于时间和空间尺寸的信息增加而较高的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号