首页> 外文OA文献 >Thermal degradation mechanisms of wood under inert and oxidative environments using DAEM methods
【2h】

Thermal degradation mechanisms of wood under inert and oxidative environments using DAEM methods

机译:使用DAEM方法在惰性和氧化环境下的热降解机制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

The pyrolytic behavior of wood is investigated under inert and oxidative conditions. The TGA experiment is given a temperature variation from 323 to 1173 K by setting the heating rate between 5 and 40 K/min. The results of DTG curves show that the hemicellulose shoulder peak for birch is more visible under inert atmosphere due to the higher content of reactive xylan-based hemicellulose (mannan-based for pine). When oxygen presents, thermal reactivity of biomass (especially the cellulose) is greatly enhanced due to the acceleration of mass loss in the first stage, and complex reactions occur simultaneously in the second stage when char and lignin oxidize. A new kinetic model is employed for biomass pyrolysis, namely the distributed activation energy model (DAEM). Under inert atmosphere, the distributed activation energy for the two species is found to be increased from 180 to 220 kJ/mol at the solid conversion of 10–85% with the high correlation coefficient. Under oxidative atmosphere, the distributed activation energy is about 175–235 kJ/mol at the solid conversion of 10–65% and 300–770 kJ/mol at the solid conversion of 70–95% with the low correlation coefficient (below 0.90). Comparatively, the activation energy obtained from established global kinetic model is correspondingly lower than that from DAEM under both inert and oxidative environments, giving relatively higher correlation coefficient (more than 0.96). The results imply that the DAEM is not suitable for oxidative pyrolysis of biomass (especially for the second mass loss stage in air), but it could represent the intrinsic mechanism of thermal decomposition of wood under nitrogen better than global kinetic model when it is applicable.
机译:在惰性和氧化条件下研究了木材的热解行为。通过将加热速率设定在5至40k / min之间的加热速率,将TGA实验得到323至1173k的温度变化。 DTG曲线的结果表明,由于基于反应性木聚糖的半纤维素(甘露松树)的含量较高,桦木的半纤维素肩峰在惰性气氛下更加可见。当氧气呈现时,由于第一阶段的质量损失加速,生物质(尤其是纤维素)的热反应性大大提高,并且当炭和木质素氧化时,在第二阶段同时发生复杂的反应。一种新的动力学模型用于生物质热解,即分布式激活能量模型(DAEM)。在惰性气氛下,发现两个物种的分布激活能量从180〜220kJ / mol增加,固体转化率为10-85%,具有高的相关系数。在氧化气氛下,分布式活化能量为约175-235kJ / mol,固体转化率为10-65%和300-770kJ / mol,固体转化率为70-95%,低相关系数(低于0.90) 。相比之下,从既定的全局动力学模型获得的激活能量相应地低于惰性和氧化环境下的DEEM,其相关系数相对较高(超过0.96)。结果意味着DAEM不适用于生物质的氧化热解(特别是对于空气中的第二质量损失阶段),但它可以代表在适用时氮气在氮气下的热分解的内在机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号