首页> 外文OA文献 >Research on the Open-Categorical Classification of the Internet-of-Things Based on Generative Adversarial Networks
【2h】

Research on the Open-Categorical Classification of the Internet-of-Things Based on Generative Adversarial Networks

机译:基于生成对抗性网络的互联网互联网开放式分类研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Nowadays, it is more and more important to deal with the potential security issues of internet-of-things (IoT). Indeed, using the physical layer features of IoT wireless signals to achieve individual identity authentication is an effective way to enhance the security of IoT. However, traditional classifiers need to know all the categories in advance to get the recognition models. Realistically, it is difficult to collect all types of samples, which will result in some mistakes that the unknown target class may be decided as a known one. Consequently, this paper constructs an improving open-categorical classification model based on the generative adversarial networks (OCC-GAN) to solve the above problems. Here, we have modified the loss function of the generative model G and the discriminative model D. Compared to the traditional GAN model which can generate the fake sample overlapping with the real samples, our proposed G model generates the fake samples as negative samples which are evenly surrounding with the real samples, while the D model learns to distinguish between real samples and fake samples. Besides, we add auxiliary training not only to gain a better recognition result but also to improve the efficiency of the model. Furthermore, Our proposed model is verified through experimental study. Compared to other common methods, such as one-class support vector machine (OC-SVM) and one-versus-rest support vector machine (OvR-SVM), the OCC-GAN model has a better performance. The recognition rate of the OCC-GAN model can reach more than 90% with a recall rate of 97% by the data of the IoT module.
机译:如今,处理互联网的潜在安全问题(物联网)越来越重要。实际上,使用IoT无线信号的物理层特征来实现单独的身份认证是增强IOT的安全性的有效方法。但是,传统分类器需要提前了解所有类别以获得识别模型。现实地,难以收集所有类型的样本,这将导致一些错误,即可以将未知的目标类别作为已知的错误。因此,本文构建了基于生成的对抗性网络(OCC-GaN)来解决上述问题的改善的开放式分类模型。在这里,我们已经修改了生成型号G的损耗功能和判别模型D.与传统的GaN模型相比,可以生成与真实样本重叠的虚假样本,我们提出的G模型产生假样本作为负样本均匀周围与真实样本,而D模型学会区分真实样本和假样本。此外,我们不仅添加辅助培训,不仅可以获得更好的识别结果,还可以提高模型的效率。此外,通过实验研究验证了我们所提出的模型。与其他常用方法相比,例如单级支持向量机(OC-SVM)和一个与休息支持向量机(OVR-SVM),OCC-GaN模型具有更好的性能。 OCC-GaN模型的识别率可以达到90%以上,通过物联网模块的数据召回速率为97%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号