首页> 外文OA文献 >Predicting Wireless MmWave Massive MIMO Channel Characteristics Using Machine Learning Algorithms
【2h】

Predicting Wireless MmWave Massive MIMO Channel Characteristics Using Machine Learning Algorithms

机译:使用机器学习算法预测无线MMWAVE大规模MIMO信道特性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper proposes a procedure of predicting channel characteristics based on a well-known machine learning (ML) algorithm and convolutional neural network (CNN), for three-dimensional (3D) millimetre wave (mmWave) massive multiple-input multiple-output (MIMO) indoor channels. The channel parameters, such as amplitude, delay, azimuth angle of departure (AAoD), elevation angle of departure (EAoD), azimuth angle of arrival (AAoA), and elevation angle of arrival (EAoA), are generated by a ray tracing software. After the data preprocessing, we can obtain the channel statistical characteristics (including expectations and spreads of the above-mentioned parameters) to train the CNN. The channel statistical characteristics of any subchannels in a specified indoor scenario can be predicted when the location information of the transmitter (Tx) antenna and receiver (Rx) antenna is input into the CNN trained by limited data. The predicted channel statistical characteristics can well fit the real channel statistical characteristics. The probability density functions (PDFs) of error square and root mean square errors (RMSEs) of channel statistical characteristics are also analyzed.
机译:本文提出了一种基于众所周知的机器学习(ML)算法和卷积神经网络(CNN)预测信道特性的程序,用于三维(3D)毫米波(MMWAVE)大量多输入多输出(MIMO )室内频道。诸如偏移幅度,延迟,方位角(AAOD)的幅度,偏移,偏移角(EAOD),左右到达角(AAOA)以及升高到达角(EAOA)的频率参数,以及射线追踪软件产生。在数据预处理之后,我们可以获得频道统计特征(包括上述参数的期望和传播)来训练CNN。当发射器(TX)天线和接收器(RX)天线的位置信息被输入到由有限数据训练的CNN中输入的CNN的位置信息时,可以预测指定室内场景中的任何子信道的信道统计特征。预测的信道统计特征可以很好地符合真实信道统计特征。还分析了频道统计特征的误差方和均方根误差(RMSE)的概率密度函数(PDF)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号