Розглядаються багатокритерiальнi задачi дискретної оптимiзацiї на допустимiй комбiнаторнiй множинi полiрозмiщень. Дослiджуються структурнi властивостi допустимої областi i рiзних видiв ефективних розв’язкiв. На основi розвитку iдей евклiдової комбiнаторної оптимiзацiї i методу головного критерiю розроблений i обгрунтований полiедральний пiдхiд до розв’язання зазначеного класу задач.
展开▼