首页> 外文OA文献 >A multi-resolution and adaptive 3-D image denoising framework with applications in medical imaging
【2h】

A multi-resolution and adaptive 3-D image denoising framework with applications in medical imaging

机译:具有医学成像应用的多分辨率和自适应3-D图像去噪框架

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Due to recent increase in the usage of 3-D magnetic resonance images (MRI) and analysis of functional magnetic resonance images (fMRI), research on 3-D image processing becomes important. Observed 3- D images often contain noise which should be removed in such a way that important image features, e.g., edges, edge structures, and other image details should be preserved, so that subsequent image analyses are reliable. Most image denoising methods in the literature are for 2-D images. However, their direct generalizations to 3- D images can not preserve complicated edge structures well. Because, the edge structures in a 3-D edge surface can be much more complicated than the edge structures in a 2-D edge curve. Moreover, the amount of smoothing should be determined locally, depending on local image features and local signal to noise ratio, which is much more challenging in 3-D images due to large number of voxels. This paper proposes an efficient 3- D image denoising procedure based on local clustering of the voxels. This method provides a framework for determining the size of bandwidth and the amount of smoothing locally by empirical procedures. Numerical studies and a real MRI denoising show that it works well in many medical image denoising problems.
机译:由于近期使用3-D磁共振图像(MRI)的使用和功能磁共振图像(FMRI)的分析,对3-D图像处理的研究变得重要。观察到的3-D图像通常包含应保留重要图像特征,例如边缘,边缘结构和其他图像细节的方式所删除的噪声,从而随后的图像分析是可靠的。文献中的大多数图像去噪方法适用于2-D图像。但是,它们的直接概括到3-D图像不能很好地保持复杂的边缘结构。如此,3-D边缘表面中的边缘结构可以比2-D边缘曲线中的边缘结构更复杂。此外,应根据局部图像特征和局部信号到噪声比,在本地确定平滑量,这在由于大量的体素导致的3-D图像中的比较得多。本文提出了基于体素的局部聚类的有效的3-D图像去噪程序。该方法提供了一种用于确定带宽大小的框架以及通过经验过程本地平滑的量。数值研究和真正的MRI去噪表明它在许多医学图像的冒失问题中运行良好。

著录项

  • 作者

    Partha Sarathi Mukherjee;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号