首页> 外文OA文献 >Arabic Sign Language Recognition System Using 2D Hands and Body Skeleton Data
【2h】

Arabic Sign Language Recognition System Using 2D Hands and Body Skeleton Data

机译:阿拉伯语手语识别系统使用2D手和身体骨架数据

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents a novel Arabic Sign Language (ArSL) recognition system, using selected 2D hands and body key points from successive video frames. The system recognizes the recorded video signs, for both signer dependent and signer independent modes, using the concatenation of a 3D CNN skeleton network and a 2D point convolution network. To accomplish this, we built a new ArSL video-based sign database. We will present the detailed methodology of recording the new dataset, which comprises 80 static and dynamic signs that were repeated five times by 40 signers. The signs include Arabic alphabet, numbers, and some daily use signs. To facilitate building an online sign recognition system, we introduce the inverse efficiency score to find a sufficient optimal number of successive frames for the recognition decision, in order to cope with a near real-time automatic ArSL system, where tradeoff between accuracy and speed is crucial to avoid delayed sign classification. For the dependent mode, best results were obtained for dynamic signs with an accuracy of 98.39%, and 88.89% for the static signs, and for the independent mode, we obtained for the dynamic signs an accuracy of 96.69%, and 86.34% for the static signs. When both the static and dynamic signs were mixed and the system trained with all the signs, accuracies of 89.62% and 88.09% were obtained in the signer dependent and signer independent modes respectively.
机译:本文介绍了一种新的阿拉伯语标志语言(ARSL)识别系统,使用选定的2D手和来自连续视频帧的身体密钥点。系统识别记录的视频标志,用于签名者依赖和签名者独立模式,使用3D CNN骨架网络和2D点卷积网络的级联。要完成此操作,我们构建了一个新的ARSL视频标志数据库。我们将介绍记录新数据集的详细方法,该方法包括80个静态和动态标志,由40个签名者重复五次。标志包括阿拉伯字母,数字和一些日常使用标志。为了方便构建在线标志识别系统,我们介绍了逆效率得分,以找到识别决定的足够最佳的连续帧数,以便应对近实时的自动ARSL系统,其中精度和速度之间的折衷至关重要,以避免延迟标志分类。对于依赖模式,对于精度为98.39%的动态标志,静态标志的动态标志和独立模式的最佳结果获得了98.39%,我们获得了动态迹象的准确性为96.69%,86.34%静态标志。当混合静态和动态标志并将其培训所有迹象都培训时,分别在签名者依赖和签名者独立模式中获得89.62%和88.09%的精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号