首页> 外文OA文献 >Ensemble-based assimilation of fractional snow-covered area satellite retrievals to estimate the snow distribution at Arctic sites
【2h】

Ensemble-based assimilation of fractional snow-covered area satellite retrievals to estimate the snow distribution at Arctic sites

机译:基于合奏的分数冰雪覆盖的区域卫星检索的同化估算北极地点的雪分布

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

With its high albedo, low thermal conductivity and large waterstoring capacity, snow strongly modulates the surface energy and waterbalance, which makes it a critical factor in mid- to high-latitude and mountainenvironments. However, estimating the snow water equivalent (SWE) ischallenging in remote-sensing applications already at medium spatialresolutions of 1 km. We present an ensemble-based data assimilationframework that estimates the peak subgrid SWE distribution (SSD) at the1 km scale by assimilating fractional snow-covered area (fSCA)satellite retrievals in a simple snow model forced by downscaled reanalysisdata. The basic idea is to relate the timing of the snow cover depletion(accessible from satellite products) to the peak SSD. Peak subgrid SWE isassumed to be lognormally distributed, which can be translated to a modeledtime series of fSCA through the snow model. Assimilation of satellite-derivedfSCA facilitates the estimation of the peak SSD, while taking into accountuncertainties in both the model and the assimilated data sets. As anextension to previous studies, our method makes use of the novel (to snowdata assimilation) ensemble smoother with multiple data assimilation (ES-MDA)scheme combined with analytical Gaussian anamorphosis to assimilate timeseries of Moderate Resolution Imaging Spectroradiometer (MODIS) and Sentinel-2 fSCA retrievals. The scheme is applied toArctic sites near Ny-Ålesund (79° N, Svalbard, Norway) where fieldmeasurements of fSCA and SWE distributions are available. The method is ableto successfully recover accurate estimates of peak SSD on most of theoccasions considered. Through the ES-MDA assimilation, the root-mean-squareerror (RMSE) for the fSCA, peak mean SWE and peak subgrid coefficient ofvariation is improved by around 75, 60 and 20 %, respectively, whencompared to the prior, yielding RMSEs of 0.01, 0.09 m waterequivalent (w.e.) and 0.13, respectively. The ES-MDA either outperforms or atleast nearly matches the performance of other ensemble-based batch smootherschemes with regards to various evaluation metrics. Given the modularity ofthe method, it could prove valuable for a range of satellite-erahydrometeorological reanalyses.
机译:凭借其高的Albedo,低导热率和大水储存能力,雪强烈调制表面能量和水平衡,使其成为中高纬度和山区的关键因素环境。但是,估计雪水等价物(SWE)是在中等空间已经挑战遥感应用决议1公里。我们提出了一个基于合奏的数据同化估计峰值子耕地SWE分布(SSD)的框架通过同化分数冰雪覆盖的区域(FSCA)1公里规模在镇压的重新分析中迫使一个简单的雪模型中的卫星检索数据。基本思想是涉及雪覆盖的时间(可从卫星产品访问)到峰值SSD。峰亚底级SWE是假设是逻辑类别分布,可以将其转换为建模的通过雪模型的FSCA的时间序列。卫星衍生的同化FSCA促进峰值SSD的估计,同时考虑到模型和同化数据集中的不确定性。作为A.扩展到以前的研究,我们的方法利用了新颖(雪数据同化)具有多种数据同化的整体畅项(ES-MDA)方案结合分析高斯骨折与同化时间适量分辨率成像分光镜(MODIS)和Sentinel-2 FSCA检索系列。该方案适用于NY-ÅLESUND附近的北极地点(79°N,SVALBARD,挪威)哪里提供FSCA和SWE分布的测量。该方法能够成功恢复大部分峰值SSD的准确估算考虑的场合。通过ES-MDA同化,根均线FSCA的误差(RMSE),峰值平均SWE和峰底级系数变异分别提高了大约75,60和20%的时间与先前的屈服度相比,0.01,0.09米的水同等(W.E.)和0.13分别。 ES-MDA优于或在最小差距匹配其他基于集合的批次更平滑的性能关于各种评估指标的计划。鉴于模块化该方法,它可以对一系列卫星时代证明有价值水样测力物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号