首页> 外文OA文献 >Artificial Intelligence Method for Shear Wave Travel Time Prediction considering Reservoir Geological Continuity
【2h】

Artificial Intelligence Method for Shear Wave Travel Time Prediction considering Reservoir Geological Continuity

机译:考虑水库地质连续性的剪力波行程时间预测人工智能方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The existing artificial intelligence model uses single-point logging data as the eigenvalue to predict shear wave travel times (DTS), which does not consider the longitudinal continuity of logging data along the reservoir and lacks the multiwell data processing method. Low prediction accuracy of shear wave travel time affects the accuracy of elastic parameters and results in inaccurate sand production prediction. This paper establishes the shear wave prediction model based on the standardization, normalization, and depth correction of conventional logging data with five artificial intelligence methods (linear regression, random forest, support vector regression, XGBoost, and ANN). The adjacent data points in depth are used as machine learning eigenvalues to improve the practicability of interwell and the accuracy of single-well prediction. The results show that the model built with XGBoost using five points outperforms other models in predicting. The R2 of 0.994 and 0.964 are obtained for the training set and testing set, respectively. Every model considering reservoir vertical geological continuity predicts test set DTS with higher accuracy than single-point prediction. The developed model provides a tool to determine geomechanical parameters and give a preliminary suggestion on the possibility of sand production where shear wave travel times are not available. The implementation of the model provides an economic and reliable alternative for the oil and gas industry.
机译:现有的人工智能模型使用单点日志记录数据作为特征值来预测剪切波行驶时间(DTS),这不考虑沿储存器的测井数据的纵向连续性,并且缺少多个数据处理方法。剪力波行程的低预测精度影响弹性参数的准确性,并导致砂生产预测不准确。本文基于具有五个人工智能方法的传统测井数据的标准化,标准化和深度校正来建立剪切波预测模型(线性回归,随机森林,支持向量回归,XGBoost和Ann)。深度的相邻数据点用作机器学习特征值,以改善interwell的实用性和单孔预测的精度。结果表明,使用五点使用XGBoost构建的模型优于预测中的其他模型。为训练集和测试集获得0.994和0.964的R2。考虑储层垂直地质连续性的每个模型都预测了比单点预测更高的精度的测试设置DTS。开发的模型提供了一种用于确定地质力学参数的工具,并对剪切波行驶时间不可用的砂生产的可能性进行初步建议。该模型的实施为石油和天然气行业提供了经济可靠的替代品。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号