首页> 外文OA文献 >Quasi-static ensemble variational data assimilation: a theoretical and numerical study with the iterative ensemble Kalman smoother
【2h】

Quasi-static ensemble variational data assimilation: a theoretical and numerical study with the iterative ensemble Kalman smoother

机译:准静态集合变分数据同化:迭代集合卡尔曼的理论和数值研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The analysis in nonlinear variational data assimilation is the solution of anon-quadratic minimization. Thus, the analysis efficiency relies on itsability to locate a global minimum of the cost function. If this minimizationuses a Gauss–Newton (GN) method, it is critical for the starting point to bein the attraction basin of a global minimum. Otherwise the method mayconverge to a local extremum, which degrades the analysis. Withchaotic models, the number of local extrema often increases with the temporalextent of the data assimilation window, making the former condition harder tosatisfy. This is unfortunate because the assimilation performance alsoincreases with this temporal extent. However, a quasi-static (QS)minimization may overcome these local extrema. It accomplishes this bygradually injecting the observations in the cost function. This method wasintroduced by Pires et al. (1996) in a 4D-Var context.We generalize this approach to four-dimensional strong-constraint nonlinearensemble variational (EnVar) methods, which are based on both a nonlinearvariational analysis and the propagation of dynamical error statistics via anensemble. This forces one to consider the cost function minimizations in thebroader context of cycled data assimilation algorithms. We adapt this QSapproach to the iterative ensemble Kalman smoother (IEnKS), an exemplar ofnonlinear deterministic four-dimensional EnVar methods. Using low-ordermodels, we quantify the positive impact of the QS approach on the IEnKS,especially for long data assimilation windows. We also examine thecomputational cost of QS implementations and suggest cheaper algorithms.
机译:非线性变分数据同化的分析是A的解决方案非二次最小化。因此,分析效率依赖于其能够找到成本函数的全局最小值。如果这最小化使用高斯 - 牛顿(GN)方法,这对于起点至关重要在全球最小的吸引力盆地。否则该方法可以收敛到局部极值,这会降低分析。和混沌模型,局部极值的数量经常随时间增加数据同化窗口的范围,使前者变得更加困难满足。这是不幸的,因为同化性能也是如此随着这个时间范围的增加。但是,Quasi-静态(QS)最小化可能会克服这些局部极值。它完成了这一点逐步注入成本函数的观察。这种方法是Pires等人介绍。 (1996)在4d-var背景下。我们将这种方法概括为四维强制非线性非线性合奏变分(envar)方法,其基于非线性变分析与动态误差统计传播合奏。这迫使其中考虑成本函数最小化循环数据同化算法的更广泛的背景。我们调整此问题迭代集合卡尔曼的方法更顺畅(Ienks),是一个例子非线性确定性四维套子方法。使用低阶模型,我们量化了QS方法对Ienks的积极影响,特别是对于长期数据同化窗口。我们也检查了QS实现的计算成本并提出更便宜的算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号