首页> 外文OA文献 >ВИКОРИСТАННЯ СИСТЕМ ШТУЧНОГО ІНТЕЛЕКТУ У ЗАДАЧАХ ПРОГНОЗУВАННЯ ФІНАНСОВИХ ІНДЕКСІВ: ОГЛЯД НАУКОВИХ ДЖЕРЕЛ
【2h】

ВИКОРИСТАННЯ СИСТЕМ ШТУЧНОГО ІНТЕЛЕКТУ У ЗАДАЧАХ ПРОГНОЗУВАННЯ ФІНАНСОВИХ ІНДЕКСІВ: ОГЛЯД НАУКОВИХ ДЖЕРЕЛ

机译:在预测财务指标任务中使用人工智能系统:科学来源审查

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The paper investigates methods of artificial intelligence in the prognostication and analysis of financial data time series. The usage of well-known methods of artificial intelligence in forecasting and analysis of time series is investigated. Financial time series are inherently highly dispersed, complex, dynamic, nonlinear, nonparametric, and chaotic nature, so large-scale and soft data mining techniques should be used to predict future values. As the scientific literature superficially describes the numerous artificial intelligence algorithms to be used in forecasting financial time series, a detailed analysis of the relevant scientific literature was conducted in scientometric databases Scopus, Science Direct, Google Scholar, IEEExplore, and Springer. It is revealed that the existing scientific publications do not contain a comprehensive analysis of literature sources devoted to the use of artificial intelligence methods in forecasting stock indices. Besides, the analyzed works, which are related in detail to the object of our study, have a limited scope because they focus on only one family of artificial intelligence algorithms, namely artificial neural networks. It was found that the analysis of the use of artificial intelligence systems should be based on two well-known approaches to predicting the behavior of financial markets: fundamental and technical analysis. The first approach is based on the study of economic factors that have a possible impact on market dynamics and more common in long-term planning. Representatives of technical analysis, on the other hand, argue that the price already contains all the fundamental factors that affect it. In this regard, technical analysis involves forecasting the dynamics of price changes based on the analysis of their change in the past, ie time series. Although today there are many developed models for forecasting stock indices using artificial intelligence algorithms, in the scientific literature there is no established methodology that defines the main elements and stages of the algorithm for forecasting financial time series. Therefore, this study has improved the methodology for forecasting financial time series.
机译:本文研究了人工智能在金融数据时间序列预测和分析中的方法。研究了使用众所周知的人工智能预测和分析时间序列序列的众所周知的方法。金融时间序列本质上是高度分散的,复杂,动态,非线性,非参数和混沌性质,因此应该使用大规模和软数据挖掘技术来预测未来的价值。随着科学文献的表面上面描述了在预测财务时间序列中使用的许多人工智能算法,对相关科学文学的详细分析是在科学数据库,科学直接,谷歌学者,IEEExplore和Springer中进行的相关科学文献。据透露,现有的科学出版物不包含对使用人工智能方法在预测库存指标中使用人工智能方法的综合分析。此外,分析的作品详细介绍了我们研究的对象,具有有限的范围,因为他们专注于一个人工智能算法,即人工神经网络。有发现,人工智能系统的使用分析应基于两个众所周知的方法来预测金融市场的行为:基本和技术分析。第一种方法是基于对可能影响市场动态和更常见的经济因素的研究,在长期规划中更为常见。另一方面,技术分析的代表争辩说,价格已经包含影响它的所有基本因素。在这方面,技术分析涉及基于对过去的变化的分析,即时间序列的分析来预测价格变化的动态。虽然今天有许多开发的模型用于使用人工智能算法预测库存指数,但在科学文献中没有建立的方法,该方法定义了预测财务时间序列算法的主要元素和阶段。因此,本研究改进了预测财务时间序列的方法。

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号