首页> 外文OA文献 >Plant species richness, elevated CO2, and atmospheric nitrogen deposition alter soil microbial community composition and function
【2h】

Plant species richness, elevated CO2, and atmospheric nitrogen deposition alter soil microbial community composition and function

机译:植物物种丰富,二氧化碳升高,大气氮沉积改变土壤微生物群落组成和功能

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We determined soil microbial community composition and function in a field experiment in which plant communities of increasing species richness were exposed to factorial elevated CO 2 and nitrogen (N) deposition treatments. Because elevated CO 2 and N deposition increased plant productivity to a greater extent in more diverse plant assemblages, it is plausible that heterotrophic microbial communities would experience greater substrate availability, potentially increasing microbial activity, and accelerating soil carbon (C) and N cycling. We, therefore, hypothesized that the response of microbial communities to elevated CO 2 and N deposition is contingent on the species richness of plant communities. Microbial community composition was determined by phospholipid fatty acid analysis, and function was measured using the activity of key extracellular enzymes involved in litter decomposition. Higher plant species richness, as a main effect, fostered greater microbial biomass, cellulolytic and chitinolytic capacity, as well as the abundance of saprophytic and arbuscular mycorrhizal (AM) fungi. Moreover, the effect of plant species richness on microbial communities was significantly modified by elevated CO 2 and N deposition. For instance, microbial biomass and fungal abundance increased with greater species richness, but only under combinations of elevated CO 2 and ambient N, or ambient CO 2 and N deposition. Cellobiohydrolase activity increased with higher plant species richness, and this trend was amplified by elevated CO 2 . In most cases, the effect of plant species richness remained significant even after accounting for the influence of plant biomass. Taken together, our results demonstrate that plant species richness can directly regulate microbial activity and community composition, and that plant species richness is a significant determinant of microbial response to elevated CO 2 and N deposition. The strong positive effect of plant species richness on cellulolytic capacity and microbial biomass indicate that the rates of soil C cycling may decline with decreasing plant species richness.
机译:我们确定土壤微生物群落组成和功能在田间实验中,其中植物群群增加了物种丰富性,暴露于因子升高的CO 2和氮气(N)沉积处理。由于升高的CO 2和N和N沉积在更多样化的植物组合中提高了植物生产率,因此杂养微生物社区具有更高的基材可用性,潜在增加的微生物活性,以及​​加速土壤碳(C)和N循环。因此,我们假设微生物社区对CO 2和N沉积的响应是植物群落的物种丰富性的作用。通过磷脂脂肪酸分析测定微生物群落组合物,使用涉及凋落物分解的关键细胞外酶的活性测量功能。植物种类更高的丰富性,作为主要效果,促进了更大的微生物生物量,纤维素分解和依甘油精能力,以及嗜酸性和丛枝菌根(AM)真菌的丰富。此外,通过升高的CO 2和N和N沉积显着改变植物物种丰富性对微生物群落的影响。例如,微生物生物量和真菌丰度随着种类的丰富性而增加,但仅在升高的CO 2和环境N和环境CO 2和N沉积的组合下。纤维二氢酶活性随着植物物种的丰富性增加,通过升高的CO 2扩增该趋势。在大多数情况下,即使在占植物生物质的影响之后,植物物种丰富性的效果也仍然显着。我们的结果表明,植物物种丰富性可以直接调节微生物活性和群落组成,并且植物物种丰富性是微生物反应对升高的CO 2和N沉积的重要决定因素。植物物种对纤维素分解能力和微生物生物量的强烈积极作用表明土壤C循环的速率可能随着植物物种丰富性降低而下降。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号