首页> 外文OA文献 >Bayesian Probabilistic Numerical Methods in Time-Dependent State Estimation for Industrial Hydrocyclone Equipment
【2h】

Bayesian Probabilistic Numerical Methods in Time-Dependent State Estimation for Industrial Hydrocyclone Equipment

机译:贝叶斯概率数值方法在工业水力旋流设备的时间依赖性状态估算中

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The use of high-power industrial equipment, such as large-scale mixingequipment or a hydrocyclone for separation of particles in liquid suspension,demands careful monitoring to ensure correct operation. The task of monitoringthe liquid suspension can be posed as a time-evolving inverse problem andsolved with Bayesian statistical methods. In this paper, we extend Bayesianmethods to incorporate statistical models for the error that is incurred in thenumerical solution of the physical governing equations. This enables fulluncertainty quantification within a principled computation-precision trade-off,in contrast to the over-confident inferences that are obtained when numericalerror is ignored. The method is cast with a sequential Monte Carlo frameworkand an optimised implementation is provided in Python.
机译:使用大型混合设备或水力旋流器等大功率工业设备进行液体悬浮液中的颗粒,要求仔细监测,以确保正确的操作。监测液体悬浮液的任务可以作为越来越多的逆问题构成,贝叶斯统计方法溶解。在本文中,我们扩展了BayesianMethods,以纳入误差的统计模型,该误差是物理控制方程的那些突出的误差。这使得满足在原则的计算精度折衷范围内的普遍定量,与忽略数值镜头时获得的过度自信的推断对比。该方法具有序贯蒙特卡罗框架,在Python中提供了优化的实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号