首页> 外文OA文献 >Wood Species Identification using Convolutional Neural Network (CNN) Architectures on Macroscopic Images
【2h】

Wood Species Identification using Convolutional Neural Network (CNN) Architectures on Macroscopic Images

机译:在宏观图像上使用卷积神经网络(CNN)架构的木材物种识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Indonesia is a country that is very rich in tree species that grow in forests. Wood growth in Indonesia consists of around 4000 species that have different names and characteristics. These differences can determine the quality and exact use of each type of wood. The procedure of standard identification is currently still carried out through visual observation by the wood anatomist. The wood identification process is very in need of the availability of wood anatomists, with a limited amount of wood anatomist will affect the result and the length of time to make an identification. This thesis uses an identification system that can classify wood based on species names with a macroscopic image of wood and the implementation of the Convolutional Neural Network (CNN) method as a classification algorithm. Supporting architecture used is AlexNet, ResNet, and GoogLeNet. Architecture is then compared to a simple CNN architecture that is made namely Kayu30Net. Kayu30Net architecture has a precision performance value reaching 84.6%, recall 83.9%, F1 score 83.1% and an accuracy of 71.6%. In the wood species classification system using CNN, it is obtained that AlexNet as the best architecture that refers to a precision value of 98.4%, recall 98.4%, F1 score 98.3% and an accuracy of 96.7%.
机译:印度尼西亚是一个非常丰富的树种,在森林中成长。印度尼西亚的木材增长包括约4000种具有不同名称和特征的物种。这些差异可以确定每种木材的质量和精确使用。目前仍然通过木质解剖学家的视觉观察来进行标准识别程序。木材识别过程非常需要木头解剖学家的可用性,有有限的木材解剖学家将影响结果和识别的时间长度。本文使用了一种识别系统,可以根据物种名称对木材进行分类,具有木材的宏观图像和卷积神经网络(CNN)方法作为分类算法。支持的架构使用是alexnet,reset和googlenet。然后将架构与简单的CNN架构进行比较,这是kayu30net的简单CNN架构。 Kayu30Net架构具有精确性能值达到84.6%,召回83.9%,F1得分83.1%,精度为71.6%。在使用CNN的木材种类分类系统中,获得AlexNet作为最佳结构,指的是98.4%的精确值,召回98.4%,F1得分98.3%,精度为96.7%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号