首页> 外文OA文献 >Identification of major depressive disorder disease-related genes and functional pathways based on system dynamic changes of network connectivity
【2h】

Identification of major depressive disorder disease-related genes and functional pathways based on system dynamic changes of network connectivity

机译:基于网络连接系统动态变化的主要抑郁症疾病相关基因和功能途径的鉴定

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Abstract Background Major depressive disorder (MDD) is a leading psychiatric disorder that involves complex abnormal biological functions and neural networks. This study aimed to compare the changes in the network connectivity of different brain tissues under different pathological conditions, analyzed the biological pathways and genes that are significantly related to disease progression, and further predicted the potential therapeutic drug targets. Methods Expression of differentially expressed genes (DEGs) were analyzed with postmortem cingulate cortex (ACC) and prefrontal cortex (PFC) mRNA expression profile datasets downloaded from the Gene Expression Omnibus (GEO) database, including 76 MDD patients and 76 healthy subjects in ACC and 63 MDD patients and 63 healthy subjects in PFC. The co-expression network construction was based on system network analysis. The function of the genes was annotated by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Human Protein Reference Database (HPRD, http://www.hprd.org/ ) was used for gene interaction relationship mapping. Results We filtered 586 DEGs in ACC and 616 DEGs in PFC for further analysis. By constructing the co-expression network, we found that the gene connectivity was significantly reduced under disease conditions (P = 0.04 in PFC and P = 1.227e−09 in ACC). Crosstalk analysis showed that CD19, PTDSS2 and NDST2 were significantly differentially expressed in ACC and PFC of MDD patients. Among them, CD19 and PTDSS2 have been targeted by several drugs in the Drugbank database. KEGG pathway analysis demonstrated that the function of CD19 and PTDSS2 were enriched with the pathway of Glycerophospholipid metabolism and T cell receptor signaling pathway. Conclusion Co-expression network and tissue comparing analysis can identify signaling pathways and cross talk genes related to MDD, which may provide novel insight for understanding the molecular mechanisms of MDD.
机译:摘要背景主要抑郁症(MDD)是一种涉及复杂的异常生物功能和神经网络的领先精神疾病。本研究旨在比较不同脑组织在不同病理条件下的网络连接的变化,分析与疾病进展显着相关的生物途径和基因,进一步预测了潜在的治疗药物靶标。方法用后序列铰接皮质(ACC)和前额叶皮质(PFC)mRNA表达谱分析从基因表达综合症(GEO)数据库,包括76名MDD患者和ACC的76名健康受试者的前额叶皮质(PFC)mRNA表达谱分析分析差异表达基因(DEGS)的表达。 63名MDD患者和63名PFC健康受试者。共表达网络构建基于系统网络分析。基因的功能通过基因和基因组(Kegg)途径分析的京都百科全书注释。人类蛋白质参考数据库(HPRD,http://www.hprd.org/)用于基因交互关系映射。结果我们在PFC中过滤了586次ACC和616次,以进一步分析。通过构建共表达网络,我们发现基因连接在疾病条件下显着降低(PFC中的PFC = 0.04和ACC的P = 1.227e-09)。串扰分析表明,CD19,PTDS2和NDST2在MDD患者的ACC和PFC中显着表达。其中,CD19和PTDSS2已被药物仓库数据库中的几种药物靶向。 Kegg途径分析表明CD19和PTDS2的功能富含甘油磷脂代谢和T细胞受体信号通路的途径。结论共表达网络和组织比较分析可以识别与MDD相关的信号传导途径和交叉谈话基因,这可以为了解MDD的分子机制提供新的洞察力。

著录项

  • 作者

    Ruijie Geng; Xiao Huang;

  • 作者单位
  • 年度 2021
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号