首页> 外文OA文献 >Towards a Viscous Wall Model for Immersed Boundary Methods
【2h】

Towards a Viscous Wall Model for Immersed Boundary Methods

机译:朝向浸没边界方法的粘性墙模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Immersed boundary methods are frequently employed for simulating flows at low Reynolds numbers or for applications where viscous boundary layer effects can be neglected. The primary shortcoming of Cartesian mesh immersed boundary methods is the inability of efficiently resolving thin turbulent boundary layers in high-Reynolds number flow application. The inefficiency of resolving the thin boundary is associated with the use of constant aspect ratio Cartesian grid cells. Conventional CFD approaches can efficiently resolve the large wall normal gradients by utilizing large aspect ratio cells near the wall. This paper presents different approaches for immersed boundary methods to account for the viscous boundary layer interaction with the flow-field away from the walls. Different wall modeling approaches proposed in previous research studies are addressed and compared to a new integral boundary layer based approach. In contrast to common wall-modeling approaches that usually only utilize local flow information, the integral boundary layer based approach keeps the streamwise history of the boundary layer. This allows the method to remain effective at much larger y+ values than local wall modeling approaches. After a theoretical discussion of the different approaches, the method is applied to increasingly more challenging flow fields including fully attached, separated, and shock-induced separated (laminar and turbulent) flows.
机译:沉浸式边界方法经常用于模拟低雷诺数的流量或可以忽略粘性边界层效应的应用。笛卡尔网格浸没边界方法的主要缺点是高雷诺数流量应用中有效地解析薄的湍流边界层。分辨薄边界的低效率与使用恒定纵横比笛卡尔栅格电池的使用有关。传统的CFD方法可以通过利用墙壁附近的大宽高比单元有效地解析大壁法正常梯度。本文呈现了浸没边界方法的不同方法,以解释与远离墙壁的流场相互作用的粘性边界层相互作用。先前研究研究中提出的不同墙面建模方法并与基于新的整体边界层的方法进行了解决。与通常仅利用局部流信息的常见壁建模方法相比,基于积分边界层的方法保持边界层的流动历史。这允许该方法在比本地墙建模方法更大的Y +值保持有效。在对不同方法的理论讨论之后,该方法应用于越来越具有挑战性的流场,包括完全附接,分离和冲击诱导的分离(层和湍流)流。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号