首页> 外文OA文献 >Online Surface Defect Identification of Cold Rolled Strips Based on Local Binary Pattern and Extreme Learning Machine
【2h】

Online Surface Defect Identification of Cold Rolled Strips Based on Local Binary Pattern and Extreme Learning Machine

机译:基于局部二元图案和极限学习机的冷轧条在线曲面缺陷识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In the production of cold-rolled strip, the strip surface may suffer from various defects which need to be detected and identified using an online inspection system. The system is equipped with high-speed and high-resolution cameras to acquire images from the moving strip surface. Features are then extracted from the images and are used as inputs of a pre-trained classifier to identify the type of defect. New types of defect often appear in production. At this point the pre-trained classifier needs to be quickly retrained and deployed in seconds to meet the requirement of the online identification of all defects in the environment of a continuous production line. Therefore, the method for extracting the image features and the training for the classification model should be automated and fast enough, normally within seconds. This paper presents our findings in investigating the computational and classification performance of various feature extraction methods and classification models for the strip surface defect identification. The methods include Scale Invariant Feature Transform (SIFT), Speeded Up Robust Features (SURF) and Local Binary Patterns (LBP). The classifiers we have assessed include Back Propagation (BP) neural network, Support Vector Machine (SVM) and Extreme Learning Machine (ELM). By comparing various combinations of different feature extraction and classification methods, our experiments show that the hybrid method of LBP for feature extraction and ELM for defect classification results in less training and identification time with higher classification accuracy, which satisfied online real-time identification.
机译:在冷轧带材的生产中,条带表面可能遭受需要使用在线检查系统检测和识别的各种缺陷。该系统配备有高速和高分辨率相机,以从移动条表面获取图像。然后从图像中提取特征,并用作预先训练的分类器的输入,以识别缺陷的类型。新型的缺陷通常出现在生产中。此时,需要在几秒钟内快速再培训和部署预训练的分类器,以满足连续生产线环境中所有缺陷的在线识别。因此,用于提取图像特征和对分类模型的训练的方法应该是自动化的,并且通常在几秒钟内速度。本文介绍了调查的各种特征提取方法和分类模型的带钢表面缺陷识别的计算和分类性能我们的研究结果。该方法包括缩放不变特征变换(SIFT),加速鲁棒特征(冲浪)和本地二进制模式(LBP)。我们评估的分类器包括后传播(BP)神经网络,支持向量机(SVM)和极端学习机(ELM)。通过比较不同特征提取和分类方法的各种组合,我们的实验表明,用于特征提取的LBP的混合方法和用于缺陷分类的ELM导致具有更高分类精度的培训和识别时间,这满足在线实时识别。

著录项

  • 作者

    Yang Liu; Ke Xu; Dadong Wang;

  • 作者单位
  • 年度 2018
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号