首页> 外文OA文献 >Organic spintronic devices utilizing spin-injection, spin-tunneling and spin-dependent transport
【2h】

Organic spintronic devices utilizing spin-injection, spin-tunneling and spin-dependent transport

机译:有机旋转式装置利用旋转喷射,旋转隧道和旋转依赖运输

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Spintronics, also known as spin electronics, or magnetoelectronics, refers to the study of the role that electron and (less frequently) nuclear spins play in solid state physics, and a group of devices that specifically exploit both the intrinsic spin of the electron and its associated magnetic moment, in addition to its fundamental electronic charge. As a principal type of spintronic device, a spin-valve is a device that uses ferromagnetic electrodes to polarize and analyze the electronic spins. The electrical resistance of the device depends sensitively on the relative magnetization of its two ferromagnetic electrodes, a phenomenon referred to as Giant Magnetoresistance (GMR). Having been successfully applied in the field of data storage, GMR also shows potential for future logic devices. Organic semiconductors possess many advantages in electronic device applications. Therefore, using organic semiconductors in spintronics is very interesting and promising, in part, because of their exceptionally long spin-decoherence times.This thesis concerns itself with the scientific study of magnetic field and spin effects in organic spin valves (OSV) and organic light emitting diodes (OLED). Three projects were finished, achieving a better understanding of the transportation of charge and spin carriers inside organic films, and paving the way to enhancing the spin diffusion length and the organic magnetoresistance (OMAR) effect.Firstly, C60 films were used as the spin-transport layer of OSV devices, because of its low hyperfine coupling and high mobility, which prior work suggested to be beneficial. Subsequently we studied the spin injection and transport properties by measuring the devicesu27 magnetoresistance (MR) response at various biasing voltages, V, temperatures, T and different C60 film thickness. But we do not observe a significantly increased spin-diffusion length compared to OSV devices based on other organic semiconductors. We propose conductivity mismatch as a likely cause of the loss of spin-valve signal with increasing C60 layer thickness.There exists some disagreement in the scientific literature regarding whether OSV operate in the so-called tunneling regime or the so-called injection regime. To shed light on this question, we fabricated spin-valve devices made of organic semiconductor thin films of rubrene sandwiched between ferromagnetic cobalt and iron electrodes. Current-voltage (I-V) characteristics in Co/AlOx/rubrene/Fe junctions with a rubrene layer thickness, d, ranging from 5-50 nm, were measured, and we found two different modes of conductivity. The first mode, tunneling, occurs in relatively thin junctions, d u3c 15 nm, and decays exponentially with increasing rubrene thickness. We determined the tunneling decay length to be 1 nm. The tunneling mode is also characterized by a weak temperature dependence and a nearly parabolic differential conductance. The second mode, injection followed by hopping, occurs in relatively thick devices, d ≥ 15 nm, and can be identified by strongly temperature dependent, highly non-linear I-V traces that are similar to those commonly measured in organic injection devices such as OLEDs. We observed MR in devices with a rubrene thickness of 5 nm and 10 nm. Those devices are clearly in the tunneling regime. For the 15 nm device, for which the tunneling current is just barely measurable we could not observe MR.In the third project, we show that the performance of both OMAR and OSV devices very sensitively depends on whether the metallic layers are deposited by thermal evaporation or electron-beam evaporation. A strongly reduced spin diffusion length and an enhanced OMAR response can be achieved in devices fabricated by electron-beamevaporation. Then we showed that the difference must be attributed to the generation of traps resulting from the exposure of the organic layer to X-ray bremsstrahlung that is generated during the e-beam evaporation process. We also used the thermally stimulated current technique (TSC) to characterize these traps.
机译:SpintRonics,也称为旋转电子器件或磁电子体,是指电子和(较不频繁地)核旋转在固态物理学中发挥作用的研究,以及一组专门利用电子和其内部旋转的装置相关磁矩,除了其基本的电子费用。作为旋转式装置的主要类型,旋转阀是使用铁磁电极偏振和分析电子旋转的装置。装置的电阻敏感地取决于其两个铁磁电极的相对磁化,该现象称为巨磁阻(GMR)。已成功应用于数据存储领域,GMR还显示了未来逻辑设备的潜力。有机半导体在电子设备应用中具有许多优点。因此,在闪蒸中使用有机半导体是非常有趣和有希望的,部分原因是它们具有特殊的旋转脱机时间。本文涉及磁场的科学研究和有机旋转阀(OSV)和有机光中的旋转效果发射二极管(OLED)。完成三个项目,更好地了解有机薄膜内的电荷和旋转载体的运输,并铺平了增强自旋扩散长度和有机磁阻(OMAL)作用的方式。过光,使用C60薄膜作为旋转 - OSV器件的传输层,因为它的高浓度耦合和高移动性,其提出的是有益的。随后,我们通过测量各种偏置电压,V,温度,T和不同C60膜厚度来研究旋转注射和运输性能。v,温度,T和不同的C60膜厚度,通过测量装置 U27磁阻(MR)响应。但是,与基于其他有机半导体的OSV器件相比,我们不观察到显着提高的旋转扩散长度。我们将电导率失配作为旋转阀信号损失的可能原因,随着C60层厚度的增加。关于OSV是否在所谓的隧道制度或所谓的注射制度中运行的科学文献中存在一些分歧。在这个问题上阐明,我们制造了由纯摩尔葡萄酒和铁电极夹在铁磁钴和铁电极之间的有机半导体薄膜制成的旋转阀装置。测量Co / Alox / rumerne / Fe结中的电流 - 电压(I-V)特性,具有5-50nm的毒物层厚度,并且我们发现两种不同的电导率模式。第一模式,隧道发生在相对较薄的结,D U3C 15nm,并以增加的擦写剂粗略地衰减。我们确定隧道衰减长度为1 nm。隧道模式的特征还在于弱温依赖性和近抛物线差分传导。第二种模式,喷射后跳动,在相对较厚的器件中发生,D≥15nm,并且可以通过强温依赖性,高度非线性I-V迹线识别,其类似于在诸如OLED的有机喷射装置中通常测量的那些。我们观察到具有5nm和10nm的杂液厚度的器件中的MR。这些设备显然在隧道方案中。对于15个NM设备,隧道电流恰到不可衡量,我们无法观察第三个项目先生,我们表明奥马尔和OSV设备的性能非常灵敏度取决于金属层是否通过热蒸发沉积或电子束蒸发。在电子束覆盖物制造的装置中可以实现强烈降低的自旋扩散长度和增强的奥马尔响应。然后,我们表明,差异必须归因于由有机层暴露于在电子束蒸发过程中产生的X射线Bremsstrahlung产生的陷阱的产生。我们还使用了热刺激的电流技术(TSC)来表征这些陷阱。

著录项

  • 作者

    Ran Lin;

  • 作者单位
  • 年度 -1
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号