首页> 外文OA文献 >Divide and Conquer: Stratifying Training Data by Tumor Grade Improves Deep Learning-Based Brain Tumor Segmentation
【2h】

Divide and Conquer: Stratifying Training Data by Tumor Grade Improves Deep Learning-Based Brain Tumor Segmentation

机译:分开和征服:肿瘤成绩分层培训数据改善了深度学习的脑肿瘤细分

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

It is a general assumption in deep learning that more training data leads to better performance, and that models will learn to generalize well across heterogeneous input data as long as that variety is represented in the training set. Segmentation of brain tumors is a well-investigated topic in medical image computing, owing primarily to the availability of a large publicly-available dataset arising from the long-running yearly Multimodal Brain Tumor Segmentation (BraTS) challenge. Research efforts and publications addressing this dataset focus predominantly on technical improvements of model architectures and less on properties of the underlying data. Using the dataset and the method ranked third in the BraTS 2018 challenge, we performed experiments to examine the impact of tumor type on segmentation performance. We propose to stratify the training dataset into high-grade glioma (HGG) and low-grade glioma (LGG) subjects and train two separate models. Although we observed only minor gains in overall mean dice scores by this stratification, examining case-wise rankings of individual subjects revealed statistically significant improvements. Compared to a baseline model trained on both HGG and LGG cases, two separately trained models led to better performance in 64.9% of cases (p < 0.0001) for the tumor core. An analysis of subjects which did not profit from stratified training revealed that cases were missegmented which had poor image quality, or which presented clinically particularly challenging cases (e.g., underrepresented subtypes such as IDH1-mutant tumors), underlining the importance of such latent variables in the context of tumor segmentation. In summary, we found that segmentation models trained on the BraTS 2018 dataset, stratified according to tumor type, lead to a significant increase in segmentation performance. Furthermore, we demonstrated that this gain in segmentation performance is evident in the case-wise ranking of individual subjects but not in summary statistics. We conclude that it may be useful to consider the segmentation of brain tumors of different types or grades as separate tasks, rather than developing one tool to segment them all. Consequently, making this information available for the test data should be considered, potentially leading to a more clinically relevant BraTS competition.
机译:它是深度学习的一般假设,更多的培训数据导致更好的性能,并且只要在训练集中表示多样,该模型将学会跨越异构输入数据概括。脑肿瘤的分割是一种在医学图像计算中的良好研究主题,主要是从长期的年度多模态脑肿瘤细分(BRATS)挑战中产生的大型公共可用数据集的可用性。解决此数据集的研究努力和出版物主要集中在模型架构的技术改进和缺点数据的性质上。使用DataSet和该方法在Brats 2018挑战中排名第三,我们进行了实验,以检查肿瘤类型对分割性能的影响。我们建议将培训数据集分为高级胶质瘤(HGG)和低级胶质瘤(LGG)科目并培训两种独立型号。虽然我们观察到整体平均骰子分数仅观察到的微小收益,但检查个体受试者的案例方针揭示了统计上显着的改进。与在HGG和LGG案例中培训的基线模型相比,两个单独培训的模型导致肿瘤核心的64.9%的案例(P <0.0001)的性能更好。对未经分层培训无利润的受试者的分析显示,这种情况被误解了图像质量差,或者在临床上呈现临床特别具有挑战性的病例(例如,不足的亚型,如IDH1-突变肿瘤),强调了这种潜在变量的重要性肿瘤细分的背景。总之,我们发现根据肿瘤类型分层的Brats 2018数据集培训的分段模型导致分割性能的显着增加。此外,我们证明,在个体科目的案例方面的案例中,这种分割性能的增长是显而易见的,但不概述统计数据。我们得出结论,考虑不同类型或级别的脑肿瘤的分割可能是单独的任务可能有用的,而不是开发一个工具来分割它们。因此,应考虑制作可用于测试数据的信息,可能导致更具临床相关的Brats竞争。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号