首页> 外文OA文献 >Explicit–implicit mapping approach to nonlinear blind separation of sparse nonnegative dependent sources from a single mixture: pure component extraction from nonlinear mixture mass spectra
【2h】

Explicit–implicit mapping approach to nonlinear blind separation of sparse nonnegative dependent sources from a single mixture: pure component extraction from nonlinear mixture mass spectra

机译:显式-隐式映射方法可从单一混合物中非线性稀疏分离稀疏非负相关源:从非线性混合物质谱中提取纯组分

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The nonlinear, nonnegative single-mixture blind source separation (BSS) problem consists of decomposing observed nonlinearly mixed multicomponent signal into nonnegative dependent component (source) signals. The problem is difficult and is a special case of the underdetermined BSS problem. However, it is practically relevant for the contemporary metabolic profiling of biological samples when only one sample is available for acquiring mass spectra ; afterwards, the pure components are extracted. Herein, we present a method for the blind separation of nonnegative dependent sources from a single, nonlinear mixture. First, an explicit feature map is used to map a single mixture into a pseudo multi-mixture. Second, an empirical kernel map is used for implicit mapping of a pseudo multi-mixture into a high-dimensional reproducible kernel Hilbert space (RKHS). Under sparse probabilistic conditions that were previously imposed on sources, the single-mixture nonlinear problem is converted into an equivalent linear, multiple-mixture problem that consists of the original sources and their higher order monomials. These monomials are suppressed by robust principal component analysis, hard-, soft- and trimmed thresholding. Sparseness constrained nonnegative matrix factorizations in RKHS yield sets of separated components. Afterwards, separated components are annotated with the pure components from the library using the maximal correlation criterion. The proposed method is depicted with a numerical example that is related to the extraction of 8 dependent components from 1 nonlinear mixture. The method is further demonstrated on 3 nonlinear chemical reactions of peptide synthesis in which 25, 19 and 28 dependent analytes are extracted from 1 nonlinear mixture mass spectra. The goal application of the proposed method is, in combination with other separation techniques, mass spectrometry-based non-targeted metabolic profiling, such as biomarker identification studies.
机译:非线性非负单混合盲源分离(BSS)问题包括将观察到的非线性混合多分量信号分解为非负相关分量(源)信号。该问题很困难,并且是未确定的BSS问题的特例。但是,当只有一个样品可用于获取质谱时,这对于生物学样品的现代代谢谱分析实际上是有意义的。然后,提取纯组分。在这里,我们提出了一种用于从单个非线性混合物中盲分离非负依赖源的方法。首先,使用显式特征图将单个混合物映射为伪多重混合物。其次,经验核图用于将伪多重混合物隐式映射到高维可再现核Hilbert空间(RKHS)。在以前强加于源的稀疏概率条件下,单混合非线性问题被转换为等效线性,多混合问题,该问题由原始源及其更高阶单项式组成。通过强大的主成分分析,硬阈值,软阈值和修整阈值抑制了这些单项式。 RKHS的稀疏性约束了非负矩阵分解,产生了分离成分的集合。然后,使用最大相关性标准,用库中的纯组件对分离的组件进行注释。通过数值示例描述了所提出的方法,该示例与从1种非线性混合物中提取8个相关成分有关。该方法在肽合成的3种非线性化学反应中得到了进一步证明,其中从1种非线性混合物质谱图中提取了25、19和28种依赖的分析物。提出的方法的目标应用是与其他分离技术相结合的基于质谱的非目标代谢谱分析,例如生物标记识别研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号