首页> 外文OA文献 >Identifying Parkinson’s Patients: A Functional Gradient Boosting Approach
【2h】

Identifying Parkinson’s Patients: A Functional Gradient Boosting Approach

机译:鉴定帕金森病人:功能梯度提升方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Parkinson’s, a progressive neural disorder, is difficult to identify due to the hidden nature of the symptoms associated. We present a machine learning approach that uses a definite set of features obtained from the Parkinson’s Progression Markers Initiative (PPMI) study as input and classifies them into one of two classes: PD (Parkinson’s disease) and HC (Healthy Control). As far as we know this is the first work in applying machine learning algorithms for classifying patients with Parkinson’s disease with the involvement of domain expert during the feature selection process. We evaluate our approach on 1194 patients acquired from Parkinson’s Progression Markers Initiative and show that it achieves a state-of-the-art performance with minimal feature engineering.
机译:帕金森是一种进步性神经障碍,由于相关的症状的隐藏性,难以识别。我们提出了一种机器学习方法,它使用从帕金森的进展标志物倡议(PPMI)研究中获得的明确特征作为输入,并将它们分为两类:Pd(帕金森病)和HC(健康控制)。据我们所知,这是应用机器学习算法的第一项工作,以便在特征选择过程中随着领域专家的参与对帕金森病患者进行分类。我们在从帕金森的进展标记倡议中获得的1194名患者评估我们的方法,并表明它实现了最先进的特征工程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号