首页> 外文OA文献 >Comparing image-based point clouds and airborne laser scanning data for estimating forest heights
【2h】

Comparing image-based point clouds and airborne laser scanning data for estimating forest heights

机译:比较基于图像的点云和机载激光扫描数据来估算林高

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Accurate and updated knowledge of forest tree heights is fundamental in the context of forest management. However, measuring canopy height over large forest areas using traditional inventory techniques is laborious, time-consuming and excessively expensive. In this study, image-based point clouds produced from stereo aerial photographs (AP) were used to estimate forest height, and compared to Airborne Laser Scanning (ALS) data. We generated image-based Canopy Height Models (CHM) using different image-matching algorithms (SGM: Semi-Global Matching; eATE: enhanced Automatic Terrain Extraction), which were compared with a pure ALS-derived CHM. Additionally, plot-level height and density metrics were extracted from CHMs and used as explanatory variables for predicting the Lorey’s mean height (LMH), which was measured at 296 reference points on the ground. CHMSGM and CHMALS showed similar results in predicting LMH at sample plot locations (RMSE% = 8.54 vs. 7.92, respectively), while CHMeATE had lower accuracy (RMSE% = 13.23). Similarly, CHMSGM showed a lower normalized median absolute deviation (NMAD) from CHMALS (0.68 m) compared to CHMeATE (1.1 m). Our study revealed that image-based point clouds using SGM in the presence of high-resolution ALS-derived digital terrain model (DTM) provide comparable results with ALS data, while the performance of image-based point clouds using eATE is poorer than ALS for forest height estimation. The findings of this study provide a viable and cost-effective option for assessing height-related forest structural parameters. The proposed methodology can be usefully applied in all those countries where AP are updated on a regular basis and pre-existing historical ALS-derived DTMs are available.
机译:准确和更新的森林树高度知识在森林管理的背景下是基础。然而,使用传统库存技术测量大型森林地区的冠层高度是费力,耗时的,并且过于昂贵。在本研究中,由立体声空中照片(AP)产生的基于图像的点云来估计林高,并与空气传播激光扫描(ALS)数据相比。我们使用不同的图像匹配算法(SGM:半全局匹配; Eate:增强的自动地形萃取)来生成基于图像的冠层高度模型(CHM),与纯ALS衍生的CHM进行比较。另外,从CHM中提取绘图级高度和密度度量,并用作预测叶片平均高度(LMH)的解释变量,这在地面上的296个参考点测量。 CHMSGM和CHMALS显示出类似的结果在样品绘图位置预测LMH(分别分别为7.92),而CHMEATE的精度较低(RMSE%= 13.23)。类似地,与Chmeate(1.1M)相比,CHMSGM从CHMALS(0.68μm)相比,CHMSGM显示出较低的标准化中值绝对偏差(NMAD)。我们的研究表明,在高分辨率ALS衍生的数字地形模型(DTM)存在中,基于图像的点云与ALS数据提供了可比的结果,而使用Eate的基于图像的点云的性能比ALS更差森林高度估计。本研究的结果为评估高度相关的森林结构参数提供了可行和成本效益的选择。所提出的方法可以在所有这些国家都有用于定期更新的所有国家和预先存在的历史ALS衍生的DTM中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号