首页> 外文OA文献 >Loading mechanics of the femur in tiger salamanders (Ambystoma tigrinum) during terrestrial locomotion
【2h】

Loading mechanics of the femur in tiger salamanders (Ambystoma tigrinum) during terrestrial locomotion

机译:在陆地运动过程中加载虎蝾螈(Ambystoma Tigrinum)的股骨的力学

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Salamanders are often used as representatives of the basal tetrapod body plan in functional studies, but little is known about the loads experienced by their limb bones during locomotion. Although salamanders’ slow walking speeds might lead to low locomotor forces and limb bone stresses similar to those of non-avian reptiles, their highly sprawled posture combined with relatively small limb bones could produce elevated limb bone stresses closer to those of avian and mammalian species. This study evaluates the loads on the femur of the tiger salamander (Ambystoma tigrinum) during terrestrial locomotion using three- dimensional measurements of the ground reaction force (GRF) and hindlimb kinematics, as well as anatomical measurements of the femur and hindlimb muscles. At peak stress (29.8±2.0% stance), the net GRF magnitude averaged 0.42body weights and was directed nearly vertically for the middle 20–40% of the contact interval, essentially perpendicular to the femur. Although torsional shear stresses were significant (4.1±0.3MPa), bending stresses experienced by the femur were low compared with other vertebrate lineages (tensile: 14.9±0.8MPa; compressive: –18.9±1.0MPa), and mechanical property tests indicated yield strengths that were fairly standard for tetrapods (157.1±3.7MPa). Femoral bending safety factors (10.5) were considerably higher than values typical for birds and mammals, and closer to the elevated values calculated for reptilian species. These results suggest that high limb bone safety factors may have an ancient evolutionary history, though the underlying cause of high safety factors (e.g. low limb bone loads, high bone strength or a combination of the two) may vary among lineages.
机译:蝾螈是经常被用来作为功能研究基础四足动物的身体构造的代表,但鲜为人知的是,在行走时通过他们的肢骨经历的负载。虽然蝾螈慢步行速度可能会导致类似的非禽类爬行动物的低运动力和四肢骨骼的压力,他们的高度趴的姿势相对较小的肢骨结合能产生升高肢体骨应力更接近鸟类和哺乳动物物种。本研究评估使用地面反作用力(GRF)和后肢运动学三维测量,以及股骨和后肢肌肉解剖测量陆地行进过程中在老虎蝾螈的股骨(Ambystoma螈)的载荷。峰值应力(29.8±2.0%的姿态),净GRF大小平均0.42body权重,并几乎垂直指向用于接触间隔的中间20〜40%,基本上垂直于股骨。和机械性能测试:;:虽然扭转剪切应力分别为显著(4.1±0.3MPa),通过弯曲股骨承受的应力进行了低与其他脊椎动物谱系(-18.9±1.0MPa压缩14.9±0.8MPa拉伸)进行比较指示的屈服强度那名为四脚相当标准的(157.1±3.7MPa)。股骨弯曲安全系数(10.5)比典型的鸟类和哺乳动物的值相当高,并且更接近为爬行动物物种中计算出的升高值。这些结果表明,高肢骨安全因素可以具有一个古老的进化史,虽然高安全因子(例如低肢骨负荷,高骨强度或两者的组合)的根本原因可能谱系之间变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号