首页> 外文OA文献 >Developing a New Computational Intelligence Approach for Approximating the Blast-Induced Ground Vibration
【2h】

Developing a New Computational Intelligence Approach for Approximating the Blast-Induced Ground Vibration

机译:开发一种新的计算智能方法,用于近似爆炸诱导的地面振动

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Ground vibration induced by blasting operations is an important undesirable effect in surface mines and has significant environmental impacts on surrounding areas. Therefore, the precise prediction of blast-induced ground vibration is a challenging task for engineers and for managers. This study explores and evaluates the use of two stochastic metaheuristic algorithms, namely biogeography-based optimization (BBO) and particle swarm optimization (PSO), as well as one deterministic optimization algorithm, namely the DIRECT method, to improve the performance of an artificial neural network (ANN) for predicting the ground vibration. It is worth mentioning this is the first time that BBO-ANN and DIRECT-ANN models have been applied to predict ground vibration. To demonstrate model reliability and effectiveness, a minimax probability machine regression (MPMR), extreme learning machine (ELM), and three well-known empirical methods were also tested. To collect the required datasets, two quarry mines in the Shur river dam region, located in the southwest of Iran, were monitored, and the values of input and output parameters were measured. Five statistical indicators, namely the percentage root mean square error (%RMSE), coefficient of determination (R2), Ratio of RMSE to the standard deviation of the observations (RSR), mean absolute error (MAE), and degree of agreement (d) were taken into account for the model assessment. According to the results, BBO-ANN provided a better generalization capability than the other predictive models. As a conclusion, BBO, as a robust evolutionary algorithm, can be successfully linked to the ANN for better performance.
机译:爆破作用引起的地面振动是表面矿山的重要不良影响,对周围地区具有重大的环境影响。因此,爆炸诱导的地面振动的精确预测是工程师和管理人员的具有挑战性的任务。本研究探讨并评估使用两个随机地产算法,即基于生物地基优化(BBO)和粒子群优化(PSO)的使用,以及一种确定性优化算法,即直接方法,提高人工神经网络的性能用于预测地面振动的网络(ANN)。值得一提的是,这是第一次采用BBO-ANN和直接ANN模型来预测地面振动。为了展示模型可靠性和有效性,还测试了Minimax概率机回归(MPMR),极端学习机(ELM)和三种众所周知的经验方法。要收集所需的数据集,监测了位于伊朗西南部的Shur River Dam区的两个采石场,测量了输入和输出参数的值。五个统计指标,即百分比根均方误差(%RMSE),决定系数(R 2),RMSE的比率的观测(RSR)的标准偏差,平均绝对误差(MAE),及(d协议的程度)考虑到模型评估。根据结果​​,BBO-ANN提供比其他预测模型更好的泛化能力。作为一个结论,BBO,作为一种强大的进化算法,可以成功地与ANN相关联,以便更好地表现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号