首页> 外文OA文献 >The use of open source GIS algorithms, big geographic data, and cluster computing techniques to compile a geospatial database that can be used to evaluate upstream bathing and sanitation behaviours on downstream health outcomes in Indonesia, 2000–2008
【2h】

The use of open source GIS algorithms, big geographic data, and cluster computing techniques to compile a geospatial database that can be used to evaluate upstream bathing and sanitation behaviours on downstream health outcomes in Indonesia, 2000–2008

机译:使用开源GIS算法,大地理数据和集群计算技术来编译一个地理空间数据库,可用于评估在印度尼西亚的下游健康成果上的上游沐浴和卫生行为,2000-2008

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Abstract Background Waterborne diseases are one of the leading causes of mortality in developing countries, and diarrhea alone is responsible for over 1.5 million deaths annually. Such waterborne illnesses most often affect those in impoverished rural communities who rely on rivers for their supply of drinking water. Deaths are most common among infants and the elderly. Without knowledge of which communities are upstream of a community, upstream sanitary and bathing behaviors can never be directly linked to downstream health outcomes including disease outbreaks. Although current GIS technologies can answer the upstream question for a limited number of downstream communities, no systematic way existed of labeling each downstream village with all its upstream contributing villages along river networks or within basins at the large national scale, such as in Indonesia. This limitation prohibits macro analyses of waterborne illness across developing world communities globally. Results This novel method approach combines parallel computing, big data, community data, and open source GIS to create a database of upstream communities for 50,000–70,0000 villages in Indonesia across four differing periods. The resultant village database provides information that can be tied to the Indonesian PODES health and behavior surveys in each village to connect upstream sanitary behaviors to downstream health outcomes. We find that the approximately 250,000 communities analyzed across the four periods in Indonesia have a combined total of 13.7 million upstream villages. The average number of upstream villages per village was almost 55, the maximum number of upstream villages for any single village was over 5300. Conclusions Advances in big-data availability, particularly high-resolution elevation data, the lowering of the cost of parallel computing options, mass survey data, and open source GIS algorithms that can utilize parallel processing and big-data, open new opportunities for the study of human health at micro granularities but across entire nations. The database generated has already been used by health researchers to compute the influence of upstream behaviors on downstream diarrhea outbreaks and to monitor avoidance behaviors to upstream water behaviors across all downstream 250,000 Indonesian villages over 4 years, and further waterborne health analyses are underway.
机译:摘要背景水载疾病是发展中国家死亡率的主要原因之一,腹泻每年负责超过150万人死亡。这种水性疾病最常常影响那些依赖河流供应饮用水的贫困农村社区。死亡在婴儿和老年人中最常见。不了解社区上游的社区,上游卫生和沐浴行为永远不会与下游健康结果直接相关,包括疾病爆发。虽然目前的GIS技术可以回答上游问题,但在有限数量的下游社区中,没有系统的方式,将每个下游村庄标记在河流网络中或在大型全国范围内的盆地内,如印度尼西亚的所有下游村庄。这一限制禁止在全球范围内开发世界社区的水性疾病宏观分析。结果这一新颖方法方法结合了并行计算,大数据,社区数据和开源GIS,在四个不同时期中为印度尼西亚的50,000-70,0000个村庄创建上游社区的数据库。结果村数据库提供可以与每个村庄中的印度尼西亚能力健康和行为调查相关联的信息,以将上游卫生行为连接到下游健康结果。我们发现,在印度尼西亚四个时期分析的约25万个社区,总计1370万上游村庄。每个村庄的平均上游村庄数量差不多55,任何单一村的上游村庄的最大数量超过5300.结论大数据可用性,特别是高分辨率高度数据,降低并行计算选项的成本的进步,质量调查数据和开源GIS算法,可以利用并行处理和大数据,开辟了微粒,但整个国家的研究人体健康的新机会。卫生研究人员已经使用的数据库已经使用,以计算上游行为对下游腹泻爆发的影响,并在4年内监测所有下游的上游的上游水行为的避免行为,进一步的水性健康分析正在进行中。

著录项

相似文献

  • 外文文献
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号