首页> 外文OA文献 >Underfrequency Load Shedding: An Innovative Algorithm Based on Fuzzy Logic
【2h】

Underfrequency Load Shedding: An Innovative Algorithm Based on Fuzzy Logic

机译:不平衡载荷脱落:基于模糊逻辑的创新算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In contemporary power systems, the load shedding schemes are typically based on disconnecting a pre-specified amount of load after the frequency drops below a predetermined value. The actual conditions at the time of disturbance may largely differ from the assumptions, which can lead to non-optimal or ineffective operation of the load shedding scheme. For many years, increasing the effectiveness of the underfrequency load shedding (UFLS) schemes has been the subject of research around the world. Unfortunately, the proposed solutions often require costly technical resources and/or large amounts of real-time data monitoring. This paper puts forth an UFLS scheme characterized by increased effectiveness in the case of large disturbances and reduced disconnected power in the case of small and medium disturbances compared to the conventional load-shedding solutions. These advantages are achieved by replacing time-consuming consecutive load dropping with the simultaneous load dropping mechanism and by replacing ineffective fixed-frequency activation thresholds independent of the state of the system with implicit adaptive thresholds based on fuzzy logic computations. The proposed algorithm does not require complex and costly technical solutions. The performance of the proposed scheme was validated using multivariate computer simulations. Selected test results are included in this paper.
机译:在现代电力系统中,负载脱落方案通常基于在频率下降到低于预定值之后断开预先指定的负载量。干扰时的实际条件可能与假设有很大不同,这可能导致负载脱落方案的非最佳或无效操作。多年来,增加了不平衡载荷的效果(UFL)计划是世界各地研究的主题。不幸的是,所提出的解决方案通常需要昂贵的技术资源和/或大量的实时数据监控。本文提出了一种UFLS方案,其特征在于,与传统的负载脱落溶液相比,在小扰动的情况下减少了小扰动的情况下的效率降低。这些优点是通过用同时加载机制替换耗时的连续负载滴加和通过基于模糊逻辑计算的隐式自适应阈值替换无效的固定频率激活阈值来实现耗时的连续负载。该算法不需要复杂且昂贵的技术解决方案。使用多元计算机模拟验证了所提出的方案的性能。本文包含所选的测试结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号