首页> 外文OA文献 >MODIS-Derived Estimation of Soil Respiration within Five Cold Temperate Coniferous Forest Sites in the Eastern Loess Plateau, China
【2h】

MODIS-Derived Estimation of Soil Respiration within Five Cold Temperate Coniferous Forest Sites in the Eastern Loess Plateau, China

机译:中国东黄土高原五寒气针叶林地区土壤呼吸估算

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Soil respiration (Rs) is seldom analyzed using remotely sensed data because satellite technology has difficulty monitoring various respiratory processes in the soil. We investigated the potential of remote sensing data products to estimate Rs, including land surface temperature (LST) and spectral vegetation indices from the Moderate Resolution Imaging Spectroradiometer (MODIS), using a nine-year (2007−2015) field measurement dataset of Rs and soil temperature (Ts) at five forest sites at the eastern Loess Plateau, China. The results indicate that soil temperature is the primary factor influencing the seasonal variation of Rs at the five sites. The accuracy of the model based on the observed data is not significantly different from the model based on MODIS-derived nighttime LST values. There was a significant difference with the model based on MODIS-derived daytime LST values. Therefore, nighttime LST was the optimum LST for estimation of Rs. The normalized difference vegetation index (NDVI) consistently exhibited a stronger correlation with Rs when compared to the green edge chlorophyll index and enhanced vegetation index. Further analysis showed that adding the NDVI into the model considering only Ts or nighttime LST could significantly improve the simulation accuracy of Rs. The models depending on nighttime LST and NDVI showed comparable accuracy with the models based on the in situ Ts and NDVI. These results suggest that models based entirely on remote sensing data from MODIS have the potential to estimate Rs at the cold temperate coniferous forest sites. The performance of the model in other vegetation types or regions has also been proved. Our conclusions further confirmed that it is feasible for large-scale estimates of Rs by means of MODIS data in temperate coniferous forest ecosystems.
机译:使用远程感测数据很少分析土壤呼吸(RS),因为卫星技术难以监测土壤中的各种呼吸过程。我们调查了遥感数据产品的潜力来估计RS,包括来自中度分辨率成像光谱仪(MODIS)的土地表面温度(LST)和光谱植被指数,使用RS的九年(2007-2015)场测量数据集中国东黄土高原五森林地区土壤温度(TS)。结果表明,土壤温度是影响五个地点rs季节变化的主要因素。基于观察到的数据的模型的准确性与基于Modis导出的夜间LST值的模型没有显着不同。基于MODIS衍生的白天LST值与模型有显着差异。因此,夜间LST是估计卢比的最佳LST。与绿边叶绿素指数和增强的植被指数相比,归一化差异植被指数(NDVI)始终表现出与卢比的更强的相关性。进一步分析表明,考虑到TS或夜间LST的模型中添加NDVI可以显着提高卢比的模拟精度。根据夜间LST和NDVI的模型显示了基于原位TS和NDVI的模型的可比精度。这些结果表明,完全基于MODIS的遥感数据的模型有可能估计冷水温带针叶林地点的卢比。还证实了模型在其他植被类型或地区的性能。我们的结论进一步证实,通过温带针叶林生态系统的MODIS数据,对RS的大规模估计是可行的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号