首页> 外文OA文献 >Towards the Discovery of Influencers to Follow in Micro-Blogs (Twitter) by Detecting Topics in Posted Messages (Tweets)
【2h】

Towards the Discovery of Influencers to Follow in Micro-Blogs (Twitter) by Detecting Topics in Posted Messages (Tweets)

机译:通过检测发布消息中的主题(推文),在微博(Twitter)中发现有影响力(Twitter)

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Micro-blogs, such as Twitter, have become important tools to share opinions and information among users. Messages concerning any topic are daily posted. A message posted by a given user reaches all the users that decided to follow her/him. Some users post many messages, because they aim at being recognized as influencers, typically on specific topics. How a user can discover influencers concerned with her/his interest? Micro-blog apps and web sites lack a functionality to recommend users with influencers, on the basis of the content of posted messages. In this paper, we envision such a scenario and we identify the problem that constitutes the basic brick for developing a recommender of (possibly influencer) users: training a classification model by exploiting messages labeled with topical classes, so as this model can be used to classify unlabeled messages, to let the hidden topic they talk about emerge. Specifically, the paper reports the investigation activity we performed to demonstrate the suitability of our idea. To perform the investigation, we developed an investigation framework that exploits various patterns for extracting features from within messages (labeled with topical classes) in conjunction with the mostly-used classifiers for text classification problems. By means of the investigation framework, we were able to perform a large pool of experiments, that allowed us to evaluate all the combinations of feature patterns with classifiers. By means of a cost-benefit function called “Suitability”, that combines accuracy with execution time, we were able to demonstrate that a technique for discovering topics from within messages suitable for the application context is available.
机译:微博(如Twitter)已成为在用户之间分享意见和信息的重要工具。有关任何主题的消息是每天发布的。由给定用户发布的消息达到决定跟随她/他的所有用户。有些用户发布许多消息,因为它们的目标是旨在被认为是影响因素,通常就特定主题。用户如何发现与她/兴趣有关的影响力? Micro-Blog应用程序和网站缺乏在发布消息内容的基础上推荐使用影响者的用户的功能。在本文中,我们设想了这样的场景,我们确定了构成基本砖的问题,用于开发推荐人(可能影响者)用户:通过利用标有主题类的消息来培训分类模型,因此在此模型可以使用分类未标记的消息,让他们谈论的隐藏主题出现。具体而言,本文报告了我们执行的调查活动,以证明我们的想法的适用性。为了执行调查,我们开发了一个调查框架,该框架利用各种模式来利用来自消息(用主题类标记)的各种模式结合主要使用的文本分类问题的分类器。通过调查框架,我们能够执行大量实验池,使我们能够评估具有分类器的特征模式的所有组合。借助于称为“适用性”的成本效益函数,它将准确性与执行时间结合起来,我们能够证明可以从适合于应用程序上下文的消息中发现主题的技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号