首页> 外文OA文献 >Tracking maneuver target using interacting multiple model-square root cubature Kalman filter based on range rate measurement
【2h】

Tracking maneuver target using interacting multiple model-square root cubature Kalman filter based on range rate measurement

机译:基于范围速率测量,使用交互多模型 - 方形根搭配卡尔曼滤波器跟踪操作目标

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The problem of maneuvering target tracking is a hot issue in the field of target tracking. Due to the range rate measurement containing the maneuvering information of target, it has the important practical significance to study how to use the range rate measurement to improve the effect of maneuvering target tracking. In the framework of interacting multiple model algorithm, the range rate measurement is used to update target state estimate and the probability of motion model to improve the tracking performance. As the measurement equation including the range rate measurement is strongly nonlinear, square root cubature Kalman filter algorithm is selected as the filter in interacting multiple model algorithm. The normal acceleration is deduced from the range rate with the reality constraint. And through Monte Carlo simulation, the empirical distribution functions of the normal acceleration statistics corresponding to different motion models are obtained. Their approximate distribution functions are obtained by the use of the expectation maximization algorithm with Gaussian mixture model. Then the probability distribution and probability distribution of measurement prediction residual are combined into a new likelihood function to improve the efficiency of updating the model probability. The experimental results show that the interacting multiple model algorithm proposed in this article has the smaller root mean square error of position and velocity and has the smaller average Kullback-Leibler divergence of model probability during the motion model stable phase.
机译:操纵目标跟踪的问题是目标跟踪领域的一个热门问题。由于包含目标的机动信息的范围速率测量,研究如何使用范围速率测量来提高机动目标跟踪的效果具有重要的实际意义。在交互帧的框架中,范围测量用于更新目标状态估计和运动模型的概率来提高跟踪性能。由于包括范围测量的测量方程强烈非线性,因此选择平方根Cucature Kalman滤波器算法作为交互多模型算法的滤波器。使用现实限制从范围速率推导出正常加速度。通过Monte Carlo仿真,获得了与不同运动模型对应的正常加速统计的经验分布函数。通过使用具有高斯混合模型的期望最大化算法来获得其近似分布函数。然后将测量预测残差的概率分布和概率分布组合成新的似函数以提高更新模型概率的效率。实验结果表明,本文中提出的相互作用多模型算法具有位置和速度的较小的均方根误差,并且在运动模型稳定相期间具有模型概率的较小平均kullback-Leibler分歧。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号