首页> 外文OA文献 >Graph-Theoretical Constructions for Graph Entropy and Network Coding Based Communications
【2h】

Graph-Theoretical Constructions for Graph Entropy and Network Coding Based Communications

机译:图 - 基于图形熵和网络编码通信的图形理论构造

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The guessing number of a directed graph (digraph), equivalent to the entropyof that digraph, was introduced as a direct criterion on the solvability of anetwork coding instance. This paper makes two contributions on the guessingnumber. First, we introduce an undirected graph on all possible configurationsof the digraph, referred to as the guessing graph, which encapsulates theessence of dependence amongst configurations. We prove that the guessing numberof a digraph is equal to the logarithm of the independence number of itsguessing graph. Therefore, network coding solvability is no more a problem onthe operations made by each node, but is simplified into a problem on themessages that can transit through the network. By studying the guessing graphof a given digraph, and how to combine digraphs or alphabets, we are thus ableto derive bounds on the guessing number of digraphs. Second, we constructspecific digraphs with high guessing numbers, yielding network coding instanceswhere a large amount of information can transit. We first propose aconstruction of digraphs with finite parameters based on cyclic codes, withguessing number equal to the degree of the generator polynomial. We thenconstruct an infinite class of digraphs with arbitrary girth for which theratio between the linear guessing number and the number of vertices tends toone, despite these digraphs being arbitrarily sparse. These constructions yieldsolvable network coding instances with a relatively small number ofintermediate nodes for which the node operations are known and linear, althoughthese instances are sparse and the sources are arbitrarily far from theircorresponding sinks.
机译:引入与该图的熵相等的有向图(图)的猜测数作为网络编码实例可解性的直接标准。本文对猜测数做出了两点贡献。首先,我们在有向图的所有可能配置上引入一个无向图,称为猜测图,该图封装了配置之间的依存关系。我们证明了有向图的猜测数等于其有向图的独立数的对数。因此,网络编码可解性不再是每个节点进行的操作上的问题,而是简化为可以通过网络传输的消息上的问题。通过研究给定图的猜测图,以及如何组合图或字母,我们便能够得出图的猜测数的界限。其次,我们用高猜测数字构造特定的有向图,从而产生大量信息可以传递的网络编码实例。我们首先提出一种基于循环码的有限参数有向图的构造,其猜测数等于生成多项式的次数。然后,我们构造具有任意周长的无限个有向图,尽管这些有向图是任意稀疏的,但线性猜测数和顶点数之间的比值趋于趋同。这些构造产生具有相对较少数量的中间节点的可解决的网络编码实例,对于这些中间节点而言,节点操作是已知的并且是线性的,尽管这些实例稀疏并且源距其对应宿任意距离远。

著录项

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"english","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号