首页> 外文OA文献 >Unsupervised Multi-Object Detection for Video Surveillance Using Memory-Based Recurrent Attention Networks
【2h】

Unsupervised Multi-Object Detection for Video Surveillance Using Memory-Based Recurrent Attention Networks

机译:使用基于内存的反复关注网络的视频监控无监督的多目标检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Nowadays, video surveillance has become ubiquitous with the quick development of artificial intelligence. Multi-object detection (MOD) is a key step in video surveillance and has been widely studied for a long time. The majority of existing MOD algorithms follow the “divide and conquer” pipeline and utilize popular machine learning techniques to optimize algorithm parameters. However, this pipeline is usually suboptimal since it decomposes the MOD task into several sub-tasks and does not optimize them jointly. In addition, the frequently used supervised learning methods rely on the labeled data which are scarce and expensive to obtain. Thus, we propose an end-to-end Unsupervised Multi-Object Detection framework for video surveillance, where a neural model learns to detect objects from each video frame by minimizing the image reconstruction error. Moreover, we propose a Memory-Based Recurrent Attention Network to ease detection and training. The proposed model was evaluated on both synthetic and real datasets, exhibiting its potential.
机译:如今,随着人工智能的快速发展,视频监控已变得普遍存在。多对象检测(MOD)是视频监控的关键步骤,并已广泛研究了很长时间。大多数现有的Mod算法遵循“分割和征服”管道,并利用流行的机器学习技术来优化算法参数。但是,该管道通常是次优,因为它将MOD任务分解为多个子任务,并且不会共同优化它们。此外,常用的监督学习方法依赖于稀缺和昂贵的标记数据。因此,我们提出了一种用于视频监控的端到端无监督的多目标检测框架,其中神经模型学会通过最小化图像重建误差来检测来自每个视频帧的对象。此外,我们提出了一种基于内存的经常性注意网络,以便于检测和培训。拟议的模型是在合成和实际数据集上进行评估,表现出其潜力。

著录项

  • 作者

    Zhen He; Hangen He;

  • 作者单位
  • 年度 2018
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号