首页> 外文OA文献 >Methodology for Analyzing the Traditional Algorithms Performance of User Reviews Using Machine Learning Techniques
【2h】

Methodology for Analyzing the Traditional Algorithms Performance of User Reviews Using Machine Learning Techniques

机译:用机器学习技术分析传统算法性能的方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Android-based applications are widely used by almost everyone around the globe. Due to the availability of the Internet almost everywhere at no charge, almost half of the globe is engaged with social networking, social media surfing, messaging, browsing and plugins. In the Google Play Store, which is one of the most popular Internet application stores, users are encouraged to download thousands of applications and various types of software. In this research study, we have scraped thousands of user reviews and the ratings of different applications. We scraped 148 application reviews from 14 different categories. A total of 506,259 reviews were accumulated and assessed. Based on the semantics of reviews of the applications, the results of the reviews were classified negative, positive or neutral. In this research, different machine-learning algorithms such as logistic regression, random forest and naïve Bayes were tuned and tested. We also evaluated the outcome of term frequency (TF) and inverse document frequency (IDF), measured different parameters such as accuracy, precision, recall and F1 score (F1) and present the results in the form of a bar graph. In conclusion, we compared the outcome of each algorithm and found that logistic regression is one of the best algorithms for the review-analysis of the Google Play Store from an accuracy perspective. Furthermore, we were able to prove and demonstrate that logistic regression is better in terms of speed, rate of accuracy, recall and F1 perspective. This conclusion was achieved after preprocessing a number of data values from these data sets.
机译:基于Android的申请广泛地由全球各地的每个人都使用。由于互联网的可用性几乎无处不在,近一半的地球仪与社交网络,社交媒体冲浪,消息传递,浏览和插件进行了。在Google Play商店中,这是最受欢迎的Internet应用程序商店之一,我们鼓励用户下载数千个应用程序和各种类型的软件。在这项研究中,我们已经刮了数千个用户评论和不同应用的评级。我们从14个不同的类别刮了148个申请点评。共有506,259条评定累积和评估。根据申请审查的语义,评论结果分类为负,积极或中立。在这项研究中,调整并测试了不同的机器学习算法,如逻辑回归,随机森林和幼稚贝叶斯。我们还评估了术语频率(TF)和逆文档频率(IDF)的结果,测量了不同的参数,例如精度,精度,召回和F1得分(F1),并以条形图的形式呈现结果。总之,我们比较了每种算法的结果,发现逻辑回归是从准确性角度来看谷歌播放商店的审查分析的最佳算法之一。此外,我们能够证明并证明在速度,精度率,召回和F1的角度来看,Logistic回归更好。在预处理来自这些数据集的多个数据值之后实现了这一结论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号