首页> 外文OA文献 >Accuracy of Zernike polynomials in characterizing optical aberrations and the corneal surface of the eye
【2h】

Accuracy of Zernike polynomials in characterizing optical aberrations and the corneal surface of the eye

机译:Zernike多项式在表征光学像差和眼睛角膜表面的准确性

摘要

PURPOSE. Zernike polynomials have been successfully used for approximately 70 years in many different fields of optics. Nevertheless, there are some recent discussions regarding the precision and accuracy of these polynomials when applied to surfaces such as the human cornea. the main objective of this work was to investigate the absolute accuracy of Zernike polynomials of different orders when fitting several types of theoretical corneal and wave-front surface data.METHODS. A set of synthetic surfaces resembling several common corneal anomalies was sampled by using cylindrical coordinates to simulate the height output files of commercial video-keratography systems. the same surfaces were used to compute the optical path difference (wave-front [WF] error), by using a simple ray-tracing procedure. Corneal surface and WF error was fit by using a least-squares algorithm and Zernike polynomials of different orders, varying from 1 to 36 OSA-VSIA convention terms.RESULTS. the root mean square error (RMSE) ranged - from the most symmetric corneal surface (spherical shape) through the most complex shape (after radial keratotomy [RK]) for both the optical path difference and the surface elevation for 1 through 36 Zernike terms - from 421.4 to 0.8 mu m and 421.4 to 8.2 mu m, respectively. the mean RMSE for the maximum Zernike terms for both surfaces was 4.5 mu m.CONCLUSIONS. These results suggest that, for surfaces such as that present after RK, in keratoconus, or after keratoplasty, even more than 36 terms may be necessary to obtain minimum accuracy requirements. the author suggests that the number of Zernike polynomials should not be a global fixed conventional or generally accepted value but rather a number based on specific surface properties and desired accuracy.
机译:目的。 Zernike多项式已在许多不同的光学领域中成功使用了大约70年。然而,最近有一些关于将这些多项式应用于人体角膜等表面的精度和准确性的讨论。这项工作的主要目的是在拟合几种类型的理论角膜和波前表面数据时研究不同阶数的Zernike多项式的绝对精度。通过使用圆柱坐标模拟商业视频角膜成像系统的高度输出文件,对一组类似于几个常见角膜异常的合成表面进行了采样。通过使用简单的光线跟踪程序,使用相同的表面来计算光程差(波前[WF]误差)。通过使用最小二乘算法和不同阶数的Zernike多项式来拟合角膜表面和WF误差,这些多项式的范围为1到36个OSA-VSIA常规术语。均方根误差(RMSE)的范围-从最对称的角膜表面(球形)到最复杂的形状(在径向角膜切开术[RK]之后)(对于1到36个Zernike项而言都是光程差和表面高程)-分别从421.4至0.8微米和421.4至8.2微米。两个表面上最大Zernike项的平均RMSE为4.5微米。这些结果表明,对于诸如在RK后,圆锥角膜中或在角膜移植后存在的表面,可能需要超过36个项才能获得最低的精度要求。作者建议Zernike多项式的数量不应该是一个固定的常规值或普遍接受的值,而应该是基于特定表面特性和所需精度的数量。

著录项

  • 作者

    Carvalho Luis Alberto;

  • 作者单位
  • 年度 2005
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号