首页> 外文OA文献 >Robust Stride Detector from Ankle-Mounted Inertial Sensors for Pedestrian Navigation and Activity Recognition with Machine Learning Approaches
【2h】

Robust Stride Detector from Ankle-Mounted Inertial Sensors for Pedestrian Navigation and Activity Recognition with Machine Learning Approaches

机译:从踝关节惯性传感器的鲁棒步伐探测器,用于行人导航和机器学习方法的活动识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, a stride detector algorithm combined with a technique inspired by zero velocity update (ZUPT) is proposed to reconstruct the trajectory of a pedestrian from an ankle-mounted inertial device. This innovative approach is based on sensor alignment and machine learning. It is able to detect 100% of both normal walking strides and more than 97% of atypical strides such as small steps, side steps, and backward walking that existing methods can hardly detect. This approach is also more robust in critical situations, when for example the wearer is sitting and moving the ankle or when the wearer is bicycling (less than two false detected strides per hour on average). As a consequence, the algorithm proposed for trajectory reconstruction achieves much better performances than existing methods for daily life contexts, in particular in narrow areas such as in a house. The computed stride trajectory contains essential information for recognizing the activity (atypical stride, walking, running, and stairs). For this task, we adopt a machine learning approach based on descriptors of these trajectories, which is shown to be robust to a large of variety of gaits. We tested our algorithm on recordings of healthy adults and children, achieving more than 99% success. The algorithm also achieved more than 97% success in challenging situations recorded by children suffering from movement disorders. Compared to most algorithms in the literature, this original method does not use a fixed-size sliding window but infers this last in an adaptive way.
机译:在本文中,一个步幅检测器算法的技术组合的启发由零速修正(ZUPT)提出了以从重构的行人的轨迹踝安装惯性装置。这种创新的方法是基于传感器校准和机器学习。它能够检测到在正常行走步幅的100%和非典型的进展,如小的步长,侧踏板,和向后走的是现有的方法几乎不能检测的97%以上。这种方法也是在危急情况下更坚固,当例如穿着者坐在和移动脚踝或当佩戴者骑自行车(少于两个虚假检测平均每小时的进展)。因此,提出了轨迹重建算法实现了比日常的生活环境下,比如在房子里现有的方法,特别是在狭窄区域更好的性能。计算出的步幅轨迹包含用于识别活动的基本信息(非典型的步幅,走,跑,和楼梯)。对于这个任务,我们采用基于这些轨迹,这证明是稳健的,以大量的各种步态的描述符的机器学习方法。我们测试了对健康成人和儿童的录音我们的算法,实现了超过99%的成功。该算法还通过挑战儿童运动紊乱症记录的情况下实现了超过97%的成功。相比于文献中最算法,这种原始的方法不使用固定大小的自适应的方式滑动窗口,但推断这最后。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号