We show that the direct product of maps with Young towers admits a Youngtower whose return times decay at a rate which is bounded above by the slowestof the rates of decay of the return times of the component maps. An applicationof this result, together with other results in the literature, yields variousstatistical properties for the direct product of various classes of systems,including Lorenz-like maps, multimodal maps, piecewise $ C^2 $ interval mapswith critical points and singularities, H'enon maps and partially hyperbolicsystems.
展开▼
机译:我们表明,具有Young塔的地图的直接乘积可以接纳Youngtower,其返回时间的衰减速率以组件地图的返回时间的最慢衰减速率为上限。该结果的应用以及文献中的其他结果,为各种类型的系统的直接乘积提供了各种统计性质,包括类洛伦兹图,多峰图,具有临界点和奇点的分段$ C ^ 2 $区间图,H 'enon映射和部分双曲系统。
展开▼