首页> 外文OA文献 >Unsupervised network embeddings with node identity awareness
【2h】

Unsupervised network embeddings with node identity awareness

机译:无监督的网络嵌入具有节点标识的认识

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Abstract A main challenge in mining network-based data is finding effective ways to represent or encode graph structures so that it can be efficiently exploited by machine learning algorithms. Several methods have focused in network representation at node/edge or substructure level. However, many real life challenges related with time-varying, multilayer, chemical compounds and brain networks involve analysis of a family of graphs instead of single one opening additional challenges in graph comparison and representation. Traditional approaches for learning representations relies on hand-crafted specialized features to extract meaningful information about the graphs, e.g. statistical properties, structural motifs, etc. as well as popular graph distances to quantify dissimilarity between networks. In this work we provide an unsupervised approach to learn graph embeddings for a collection of graphs defined on the same set of nodes so that it can be used in numerous graph mining tasks. By using an unsupervised neural network approach on input graphs, we aim to capture the underlying distribution of the data in order to discriminate between different class of networks. Our method is assessed empirically on synthetic and real life datasets and evaluated in three different tasks: graph clustering, visualization and classification. Results reveal that our method outperforms well known graph distances and graph-kernels in clustering and classification tasks, being highly efficient in runtime.
机译:摘要基于网络的数据中的主要挑战是发现表示或编码图形结构的有效方法,以便可以通过机器学习算法有效地利用它。几种方法在节点/边缘或子结构级别的网络表示中聚焦。然而,许多与时变,多层,化学化合物和脑网络相关的真实生活挑战涉及分析图形家族,而不是在图表比较和表示中进行额外的挑战。学习陈述的传统方法依赖于手工制作的专业功能,以提取有关图形的有意义信息,例如,统计属性,结构图案等以及流行图距离,以量化网络之间的异化。在这项工作中,我们提供了一个无人监督的方法,用于学习图表嵌入的图形嵌入,以获取在同一组节点上定义的图形集合,以便它可以在众多图形挖掘任务中使用。通过在输入图上使用无监督的神经网络方法,我们的目的是捕获数据的基础分布,以便区分不同类别的网络。我们的方法是在综合性和实际生命数据集上的经验进行评估,并在三个不同的任务中进行评估:图形聚类,可视化和分类。结果表明,我们的方法优于聚类和分类任务中众所周知的图形距离和图形 - 内核,在运行时高效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号